满分5 > 初中数学试题 >

已知平行于x轴的直线y=a(a≠0)与函数y=x和函数y=的图象分别交于点A和点...

已知平行于x轴的直线y=a(a≠0)与函数y=x和函数y=manfen5.com 满分网的图象分别交于点A和点B,又有定点P(2,0).
(1)若a>0,且tan∠POB=manfen5.com 满分网,求线段AB的长;
(2)在过A,B两点且顶点在直线y=x上的抛物线中,已知线段AB=manfen5.com 满分网,且在它的对称轴左边时,y随着x的增大而增大,试求出满足条件的抛物线的解析式;
(3)已知经过A,B,P三点的抛物线,平移后能得到y=manfen5.com 满分网x2的图象,求点P到直线AB的距离.manfen5.com 满分网
(1)设B点坐标为(m,n),利用三角函数求出m与n的值以及点A的坐标. (2)依题意可知抛物线开口向下,设点A(a,a),B(,a)求出a值.设二次函数为y=k(x+把点A代入求得k值以及函数解析式. (3)依题意可求出抛物线的对称轴为x=+.把点A的坐标代入解析式求出a值. 【解析】 (1)设第一象限内的点B(m,n), 则tan∠POB=, 得m=9n, 又点B在函数y=的图象上,得n=, 所以m=3(-3舍去), 点B为(3,), 而AB∥x轴,所以点A(,), 所以AB=3-. (2)由条件可知所求抛物线开口向下, 设点A(a,a),B(,a), 则AB=-a=, 所以3a2+8a-3=0, 解得a=-3或a=. 当a=-3时,点A(-3,-3),B(-,-3), 因为顶点在y=x上, 所以顶点为(-,-), 所以可设二次函数为y=k(x+)2-, 点A代入,解得k=-, 所以所求函数解析式为y=-(x+)2- 同理,当a=时,所求函数解析式为y=-(x-)2+; (3)设A(a,a),B(,a),由条件可知抛物线的对称轴为x=+, 设所求二次函数解析式为:y=(x-2)(x-(a+)+2), 点A(a,a)代入, 解得a1=3,, 所以点P到直线AB的距离为3或.
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t=2时,AP=______,点Q到AC的距离是______
(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由;
(4)当DE经过点C时,请直接写出t的值.

manfen5.com 满分网 查看答案
如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连接CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.

manfen5.com 满分网 查看答案
如图,抛物线y=-manfen5.com 满分网x2-x+2的顶点为A,与y轴交于点B.
(1)求点A、点B的坐标;
(2)若点P是x轴上任意一点,求证:PA-PB≤AB;
(3)当PA-PB最大时,求点P的坐标.

manfen5.com 满分网 查看答案
如图,直线y=-x+4与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.
manfen5.com 满分网
(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化并说明理由;
(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?
(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a<4),正方形OCMD与△AOB重叠部分的面积为S.试求S与a的函数关系式并画出该函数的图象.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.