满分5 > 初中数学试题 >

如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于...

如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为manfen5.com 满分网
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)由△ABC的面积为,可得AB×OC=,又二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,-1)可求得该二次函数的关系式; (2)根据直线与圆的位置的位置关系确定m的取值范围. (3)四边形ABCD为直角梯形,要分类讨论,即究竟那条边为底.可以分别以AC、BC为底进行讨论. 【解析】 (1)∵OC=1, ∴q=-1, ∵△ABC的面积为. ∴OC×AB=, 解得AB=, 设A(a,0),B(b,0), 则a、b是一元二次方程x2+px-1=0两个根, ∴a+b=-p,ab=-1, ∴AB=b-a==, 解得p=, 又∵p<0, ∴p=. 所以解析式为:y=x2-x-1; (2)令y=0, 解方程得x2-x-1=0, 得x1=-,x2=2, 所以A(,0),B(2,0), 在直角三角形AOC中可求得AC=,同样可求得BC=, 显然AC2+BC2=AB2,得三角形ABC是直角三角形.AB为斜边, 所以外接圆的直径为AB=, 所以. (3)存在,AC⊥BC, ①若以AC为底边,则BD∥AC,易求AC的解析式为y=-2x-1, 可设BD的解析式为y=-2x+b, 把B(2,0)代入得BD解析式为y=-2x+4, 解方程组 得D(,9) ②若以BC为底边,则BC∥AD,易求BC的解析式为y=0.5x-1, 可设AD的解析式为y=0.5x+b,把A(,0)代入 得AD解析式为y=0.5x+0.25, 解方程组 得D() 综上,所以存在两点:(,9)或().
复制答案
考点分析:
相关试题推荐
如图,抛物线y=ax2+bx+c的交x轴于点A和点B(-2,0),与y轴的负半轴交于点C,且线段OC的长度是线段OA的2倍,抛物线的对称轴是直线x=1.
(1)求抛物线的解析式;
(2)若过点(0,-5)且平行于x轴的直线与该抛物线交于M、N两点,以线段MN为一边抛物线上与M、N不重合的任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,请你求出S关于点P的纵坐标y的函数解析式;
(3)当0<x≤manfen5.com 满分网时,(2)中的平行四边形的面积是否存在最大值?若存在,请求出来;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求该抛物线所对应的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速度从如图所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=manfen5.com 满分网时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
manfen5.com 满分网
查看答案
已知平行于x轴的直线y=a(a≠0)与函数y=x和函数y=manfen5.com 满分网的图象分别交于点A和点B,又有定点P(2,0).
(1)若a>0,且tan∠POB=manfen5.com 满分网,求线段AB的长;
(2)在过A,B两点且顶点在直线y=x上的抛物线中,已知线段AB=manfen5.com 满分网,且在它的对称轴左边时,y随着x的增大而增大,试求出满足条件的抛物线的解析式;
(3)已知经过A,B,P三点的抛物线,平移后能得到y=manfen5.com 满分网x2的图象,求点P到直线AB的距离.manfen5.com 满分网
查看答案
如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t=2时,AP=______,点Q到AC的距离是______
(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由;
(4)当DE经过点C时,请直接写出t的值.

manfen5.com 满分网 查看答案
如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连接CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.