满分5 > 初中数学试题 >

如图①,在梯形ABCD中,CD∥AB,∠ABC=90°,∠DAB=60°,AD=...

如图①,在梯形ABCD中,CD∥AB,∠ABC=90°,∠DAB=60°,AD=2,CD=4.另有一直角三角形EFG,∠EFG=90°,点G与点D重合,点E与点A重合,点F在AB上,让△EFG的边EF在AB上,点G在DC上,以每秒1个单位的速度沿着AB方向向右运动,如图②,点F与点B重合时停止运动,设运动时间为t秒.
(1)在上述运动过程中,请分别写出当四边形FBCG为正方形和四边形AEGD为平行四边形时对应时刻t的值或范围;
(2)以点A为原点,以AB所在直线为x轴,过点A垂直于AB的直线为y轴,建立如图③所示的坐标系.求过A,D,C三点的抛物线的解析式;
(3)探究:延长EG交(2)中的抛物线于点Q,是否存在这样的时刻t使得△ABQ的面积与梯形ABCD的面积相等?若存在,求出t的值;若不存在,请说明理由.

manfen5.com 满分网
(1)∵∠ABC=90°,∠DAB=60°,AD=2,解直角△DAF可得DF=,又FB=4-t,当GF=FB时,四边形FBCG为正方形,即=4-t,G、C重合之前,始终有GE∥OE,DG∥OE,故当0<t≤4时,四边形AEGD为平行四边形; (2)解直角△EFG得GF=,EF=1,又AD=2,∴点D、C的坐标分别是(),(5),抛物线经过原点,可求抛物线解析式; (3)梯形ABCD面积可求,△ABQ的底边AB为已知,由此可求AB边上的高,即点Q的纵坐标,根据抛物线解析式求横坐标,进一步求出E点位置,可得出运动时间t. 【解析】 (1)∵∠ABC=90°,∠DAB=60°,AD=2, ∴解直角△DAF可得AF=1,DF=, 当时,四边形FBCG为正方形. 当0<t≤4时,四边形AEGD为平行四边形. (2)点D、C的坐标分别是(),(5), ∵抛物线经过原点O(0,0), ∴设抛物线的解析式为y=ax2+bx, 将D、C两点坐标代入得, 解得, ∴抛物线的解析式为y=-x2+x; (3)∵点Q在抛物线上, ∴点Q(x,-x2+x), 过点Q作QM⊥x轴于点M,又B(5,0), 则S△ABQ=AB•QM=|-x2+x|=|-x2+6x|; 又S四边形ABCD=(4+5)××=, 令|-x2+6x|=, ∵EG的延长线与抛物线交于x轴的上方, ∴-x2+6x=9解得x=3, 当x=3时,y=-×9+×3=, ∵∠QEM=60°, ∴EM==÷=, ∴t=3-(秒). 即存在这样的时刻t,当t=秒时,△AQB的面积与梯形ABCD的面积相等.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,已知抛物线y=a(x+1)2+c(a>0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为y=kx-3,与x轴的交点为N,且cos∠BCO=manfen5.com 满分网
(1)求此抛物线的函数表达式;
(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?
查看答案
如图,Rt△ABC的顶点坐标分别为A(0,manfen5.com 满分网),B(manfen5.com 满分网manfen5.com 满分网),C(1,0),∠ABC=90°,BC与y轴的交点为D,D点坐标为(0,manfen5.com 满分网),以点D为顶点y轴为对称轴的抛物线过点B.
(1)求该抛物线的解析式.
(2)将△ABC沿AC折叠后得到点B的对应点B',求证:四边形AOCB'是矩形,并判断点B'是否在(1)的抛物线上.
(3)延长BA交抛物线于点E,在线段BE上取一点P,过点P作x轴的垂线,交抛物线于点F,是否存在这样的点P,使四边形PADF是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,抛物线y=a(x+3)(x-1)与x轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(-2,6).
(1)求a的值及直线AC的函数关系式;
(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.
①求线段PM长度的最大值;
②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,抛物线F:y=ax2+bx+c的顶点为P,抛物线F与y轴交于点A,与直线OP交于点B.过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F′:y=a′x2+b′x+c′,抛物线F′与x轴的另一个交点为C.
(1)当a=1,b=-2,c=3时,求点C的坐标(直接写出答案);
(2)若a、b、c满足了b2=2ac
①求b:b′的值;
②探究四边形OABC的形状,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.