满分5 > 初中数学试题 >

如图,直线y=-x+6分别与x轴、y轴交于A、B两点;直线y=x与AB交于点C,...

如图,直线y=-manfen5.com 满分网x+6分别与x轴、y轴交于A、B两点;直线y=manfen5.com 满分网x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).
(1)求点C的坐标.
(2)当0<t<5时,求S与t之间的函数关系式.
(3)求(2)中S的最大值.
(4)当t>0时,直接写出点(4,manfen5.com 满分网)在正方形PQMN内部时t的取值范围.
参考公式:二次函数y=ax2+bx+c图象的顶点坐标为(manfen5.com 满分网).

manfen5.com 满分网
(1)简单求两直线的交点,得点C的坐标; (2)根据几何关系把s用t表示,注意当MN在AD上时,这一特殊情况. (3)转化为求函数最值问题; (4)求定点在正方形PQMN内部时,t的范围,点E在x轴上运动,要用到分类讨论. 【解析】 (1)由题意,得, 解得, ∴C(3,). (2)根据题意,得AE=t,OE=8-t. ∴点Q的纵坐标为(8-t),点P的纵坐标为-(8-t)+6=t, ∴PQ=(8-t)-t=10-2t. 当MN在AD上时,10-2t=t, ∴t=. 当0<t≤时,S=t(10-2t),即S=-2t2+10t. 当<t<5时,S=(10-2t)2,即S=4t2-40t+100. (3)当0<t≤时,S=-2(t-)2+, ∴t=时,S最大值=. 当≤t<5时,S=4(t-5)2, ∵t<5时,S随t的增大而减小, ∴t=时,S最大值=. ∵>, ∴S的最大值为. (4)当t=5时,PQ=0,P,Q,C三点重合; 当t<5时,知OE=4时是临界条件,即8-t=4 即t=4 ∴点Q的纵坐标为5>, 点(4,)在正方形边界PQ上,E继续往左移动,则点(4,)进入正方形内部,但点Q的纵坐标再减少,当Q点的纵坐标为时,OE= ∴8-t=即t=, 此时OE+PN==+(10-2t)=>4满足条件, ∴4<t<, 当t>5时,由图和条件知,则有E(t-8,0),PQ=2t-10要满足点(4,)在正方形的内部, 则临界条件N点横坐标为4⇒4=PQ+OE=|2t-10|+|t-8|=3t-18 即t=6,此时Q点的纵坐标为:-×2+6=.满足条件, ∴t>6. 综上所述:4<t<或t>6.
复制答案
考点分析:
相关试题推荐
如图,抛物线y=ax2-x-manfen5.com 满分网与x轴正半轴交于点A(3,0),以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF.
(1)求a的值;
(2)求点F的坐标.

manfen5.com 满分网 查看答案
如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,A、C两点的坐标分别为A(-3,0)、C(0,manfen5.com 满分网),且当x=-4和x=2时二次函数的函数值y相等.
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为项点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
已知二次函数过点A(0,-2),B(-1,0),C(manfen5.com 满分网
(1)求此二次函数的解析式;
(2)判断点M(1,manfen5.com 满分网)是否在直线AC上;
(3)过点M(1,manfen5.com 满分网)作一条直线l与二次函数的图象交于E、F两点(不同于A,B,C三点),请自已给出E点的坐标,并证明△BEF是直角三角形.

manfen5.com 满分网 查看答案
如图①,点A′,B′的坐标分别为(2,0)和(0,-4),将△A′B′O绕点O按逆时针方向旋转90°后得△ABO,点A′的对应点是点A,点B′的对应点是点B.
(1)写出A,B两点的坐标,并求出直线AB的解析式;
(2)将△ABO沿着垂直于x轴的线段CD折叠,(点C在x轴上,点D在AB上,点D不与A,B重合)如图②,使点B落在x轴上,点B的对应点为点E.设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.
①试求出S与x之间的函数关系式(包括自变量x的取值范围);
②当x为何值时,S的面积最大,最大值是多少?
③是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图①,在梯形ABCD中,CD∥AB,∠ABC=90°,∠DAB=60°,AD=2,CD=4.另有一直角三角形EFG,∠EFG=90°,点G与点D重合,点E与点A重合,点F在AB上,让△EFG的边EF在AB上,点G在DC上,以每秒1个单位的速度沿着AB方向向右运动,如图②,点F与点B重合时停止运动,设运动时间为t秒.
(1)在上述运动过程中,请分别写出当四边形FBCG为正方形和四边形AEGD为平行四边形时对应时刻t的值或范围;
(2)以点A为原点,以AB所在直线为x轴,过点A垂直于AB的直线为y轴,建立如图③所示的坐标系.求过A,D,C三点的抛物线的解析式;
(3)探究:延长EG交(2)中的抛物线于点Q,是否存在这样的时刻t使得△ABQ的面积与梯形ABCD的面积相等?若存在,求出t的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.