满分5 > 初中数学试题 >

如图①,某产品标志的截面图形由一个等腰梯形和抛物线的一部分组成,在等腰梯形ABC...

如图①,某产品标志的截面图形由一个等腰梯形和抛物线的一部分组成,在等腰梯形ABCD中,AB∥DC,AB=20cm,DC=30CM,∠ADC=45度.对于抛物线部分,其顶点为CD的中点O,且过A、B两点,开口终端的连线MN平行且等于DC.
(1)如图①所示,在以点O为原点,直线OC为x轴的坐标系内,点C的坐标为(15,0),试求A、B两点的坐标;
(2)求标志的高度(即标志的最高点到梯形下底所在直线的距离);
(3)现根据实际情况,需在标志截面图形的梯形部分的外围均匀镀上一层厚度为3cm的保护膜,如图②,请在图中补充完整镀膜部分的示意图,并求出镀膜的外围周长.

manfen5.com 满分网
(1)可通过构建直角三角形来求A、B的坐标,作AE⊥DC,BF⊥DC,垂足分别为E、F;OF就是B点的横坐标,BF就是B点的纵坐标.不难得出OF=AB=10cm,在直角三角形BFC中,FC=(CD-AB)=5cm,∠BCF=45°,即可求出BF的长,也就得出了B点的坐标,A、B关于y轴对称,也就能求出A点的坐标; (2)标志物的高度其实就是M、N两点的纵坐标.由于MN∥=CD,因此如果连接MD、NC,四边形MDCN就是矩形,那么M、N两点的坐标和D、C两点的横坐标相等,可根据A、B两点的坐标先确定出抛物线的解析式,然后根据抛物线的解析式来求出M、N两点的坐标,即可得出标志物的高度; (3)经过画图不难得出镀膜外围的周长应该是四条线段和四段圆弧的长.四条线段就是梯形的周长,而四段圆弧分别是两个圆心角为45°半径为3cm的弧长(A,B两个顶点所对的弧长)以及两个圆心角为135°半径为3cm的弧长(C、D两个顶点所对的弧长).然后可根据各自的计算公式求出镀膜外围的周长. 【解析】 (1)作AE⊥DC,BF⊥DC,垂足分别为E,F, ∵AB∥DC ∴四边形AEFB为矩形 ∴AE=BF,AB=EF=20 又∵AD=BC ∴Rt△ADE≌Rt△BCF(HL) ∴DE=FC=(30-20)=5 又∵∠ADE=∠BCF=45° ∴AE=BF=DE=FC=5 又∵OD=OC=15 ∴OE=OF=10 ∴点A,B的坐标分别为(-10,5),(10,5); (2)设抛物线的函数解析式为y=ax2, 由点B(10,5)在其图象上得5=100a,解得a=, ∴抛物线的函数解析式为y=x2, 又∵MN∥DC,且MN=CD ∴点M,N关于y轴对称 ∴点N的横坐标为15, 代入y=x2得y= 故标志的高度为cm; (3)镀膜示意图如下: 由示意图可知,镀膜外围周长l由四条线段长和四条半径为3cm的弧长构成, 故l=5×2+20+30+×2+×2=10+50+6π. 所以镀膜的外围周长为(10+50+6π)cm.
复制答案
考点分析:
相关试题推荐
如图,直线y=-manfen5.com 满分网x+6分别与x轴、y轴交于A、B两点;直线y=manfen5.com 满分网x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).
(1)求点C的坐标.
(2)当0<t<5时,求S与t之间的函数关系式.
(3)求(2)中S的最大值.
(4)当t>0时,直接写出点(4,manfen5.com 满分网)在正方形PQMN内部时t的取值范围.
参考公式:二次函数y=ax2+bx+c图象的顶点坐标为(manfen5.com 满分网).

manfen5.com 满分网 查看答案
如图,抛物线y=ax2-x-manfen5.com 满分网与x轴正半轴交于点A(3,0),以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF.
(1)求a的值;
(2)求点F的坐标.

manfen5.com 满分网 查看答案
如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,A、C两点的坐标分别为A(-3,0)、C(0,manfen5.com 满分网),且当x=-4和x=2时二次函数的函数值y相等.
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为项点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
已知二次函数过点A(0,-2),B(-1,0),C(manfen5.com 满分网
(1)求此二次函数的解析式;
(2)判断点M(1,manfen5.com 满分网)是否在直线AC上;
(3)过点M(1,manfen5.com 满分网)作一条直线l与二次函数的图象交于E、F两点(不同于A,B,C三点),请自已给出E点的坐标,并证明△BEF是直角三角形.

manfen5.com 满分网 查看答案
如图①,点A′,B′的坐标分别为(2,0)和(0,-4),将△A′B′O绕点O按逆时针方向旋转90°后得△ABO,点A′的对应点是点A,点B′的对应点是点B.
(1)写出A,B两点的坐标,并求出直线AB的解析式;
(2)将△ABO沿着垂直于x轴的线段CD折叠,(点C在x轴上,点D在AB上,点D不与A,B重合)如图②,使点B落在x轴上,点B的对应点为点E.设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.
①试求出S与x之间的函数关系式(包括自变量x的取值范围);
②当x为何值时,S的面积最大,最大值是多少?
③是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.