满分5 > 初中数学试题 >

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,...

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.

manfen5.com 满分网
(1)根据A,B,C三点的坐标,可以运用交点式法求得抛物线的解析式.再根据顶点的坐标公式求得抛物线的顶点坐标; (2)根据B,D的坐标运用待定系数法求得直线BD的解析式,再根据三角形的面积公式以及y与x之间的函数关系式得到s与x之间的函数关系式.点P的横坐标即x的值位于点D和点B的横坐标之间.根据二次函数的顶点式即可分析其最值; (3)根据(2)中的坐标得点E和点C重合.过P′作P′H⊥y轴于H,P′F交y轴于点M.要求P′H和OH的长.P′H的长可以运用直角三角形P′CM的面积进行计算.设MC=m,则MF=m,P′M=3-m,P′E=.根据勾股定理列方程求解,得到直角三角形P′CM的三边后,再根据直角三角形的面积公式进行计算.要求OH的长,已知点C的坐标,只需根据勾股定理进一步求得CH的长即可.把求得的点P的坐标代入抛物线解析式即可判断点P′是否在该抛物线上. 【解析】 (1)设y=a(x+1)(x-3),(1分) 把C(0,3)代入,得a=-1,(2分) ∴抛物线的解析式为:y=-x2+2x+3.(4分) 顶点D的坐标为(1,4).(5分) (2)设直线BD解析式为:y=kx+b(k≠0),把B、D两点坐标代入, 得,(6分) 解得k=-2,b=6. ∴直线BD解析式为y=-2x+6.(7分) s=PE•OE=xy=x(-2x+6)=-x2+3x,(8分) ∴s=-x2+3x(1<x<3)(9分) s=-(x2-3x+)+=-(x-)2+.(10分) ∴当时,s取得最大值,最大值为.(11分) (3)当s取得最大值,,y=3, ∴.(5分) ∴四边形PEOF是矩形. 作点P关于直线EF的对称点P′,连接P′E、P′F. 法一:过P′作P′H⊥y轴于H,P′F交y轴于点M. 设MC=m,∵CO∥PF, ∴∠2=∠PFC, 由对称可知∠PFC=∠P′FC, ∴∠2=∠P′FC, 则MF=MC=m,P′M=3-m,P′E=. 在Rt△P′MC中,由勾股定理,. 解得m=. ∵CM•P′H=P′M•P′E, ∴P′H=. 由△EHP′∽△EP′M,可得,EH=. ∴OH=3-. ∴P′坐标.(13分) 法二:连接PP′,交CF于点H,分别过点H、P′作PC的垂线,垂足为M、N. 易证△CMH∽△HMP. ∴. 设CM=k,则MH=2k,PM=4k. ∴PC=5k=,k=. 由三角形中位线定理,PN=8k=,P′N=4k=. ∴CN=PN-PC=-=,即x=-. y=PF-P′N=3- ∴P′坐标(-,).(13分) 把P′坐标(-)代入抛物线解析式,不成立,所以P′不在抛物线上.(14分)
复制答案
考点分析:
相关试题推荐
如图①,某产品标志的截面图形由一个等腰梯形和抛物线的一部分组成,在等腰梯形ABCD中,AB∥DC,AB=20cm,DC=30CM,∠ADC=45度.对于抛物线部分,其顶点为CD的中点O,且过A、B两点,开口终端的连线MN平行且等于DC.
(1)如图①所示,在以点O为原点,直线OC为x轴的坐标系内,点C的坐标为(15,0),试求A、B两点的坐标;
(2)求标志的高度(即标志的最高点到梯形下底所在直线的距离);
(3)现根据实际情况,需在标志截面图形的梯形部分的外围均匀镀上一层厚度为3cm的保护膜,如图②,请在图中补充完整镀膜部分的示意图,并求出镀膜的外围周长.

manfen5.com 满分网 查看答案
如图,直线y=-manfen5.com 满分网x+6分别与x轴、y轴交于A、B两点;直线y=manfen5.com 满分网x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).
(1)求点C的坐标.
(2)当0<t<5时,求S与t之间的函数关系式.
(3)求(2)中S的最大值.
(4)当t>0时,直接写出点(4,manfen5.com 满分网)在正方形PQMN内部时t的取值范围.
参考公式:二次函数y=ax2+bx+c图象的顶点坐标为(manfen5.com 满分网).

manfen5.com 满分网 查看答案
如图,抛物线y=ax2-x-manfen5.com 满分网与x轴正半轴交于点A(3,0),以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF.
(1)求a的值;
(2)求点F的坐标.

manfen5.com 满分网 查看答案
如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,A、C两点的坐标分别为A(-3,0)、C(0,manfen5.com 满分网),且当x=-4和x=2时二次函数的函数值y相等.
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为项点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
已知二次函数过点A(0,-2),B(-1,0),C(manfen5.com 满分网
(1)求此二次函数的解析式;
(2)判断点M(1,manfen5.com 满分网)是否在直线AC上;
(3)过点M(1,manfen5.com 满分网)作一条直线l与二次函数的图象交于E、F两点(不同于A,B,C三点),请自已给出E点的坐标,并证明△BEF是直角三角形.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.