满分5 > 初中数学试题 >

已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数. (1)求...

已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;
(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=manfen5.com 满分网x+b(b<k)与此图象有两个公共点时,b的取值范围.

manfen5.com 满分网
(1)综合根的判别式及k的要求求出k的取值; (2)对k的取值进行一一验证,求出符合要求的k值,再结合抛物线平移的规律写出其平移后的解析式; (3)求出新抛物线与x轴的交点坐标,再分别求出直线y=x+b经过点A、B时的b的取值,进而求出其取值范围.本题第二问是难点,主要是不会借助计算淘汰不合题意的k值. 【解析】 (1)由题意得,△=16-8(k-1)≥0. ∴k≤3. ∵k为正整数, ∴k=1,2,3; (2)设方程2x2+4x+k-1=0的两根为x1,x2,则 x1+x2=-2,x1•x2=. 当k=1时,方程2x2+4x+k-1=0有一个根为零; 当k=2时,x1•x2=,方程2x2+4x+k-1=0没有两个不同的非零整数根; 当k=3时,方程2x2+4x+k-1=0有两个相同的非零实数根-1. 综上所述,k=1和k=2不合题意,舍去,k=3符合题意. 当k=3时,二次函数为y=2x2+4x+2,把它的图象向下平移8个单位得到的图象的解析式为y=2x2+4x-6; (3)设二次函数y=2x2+4x-6的图象与x轴交于A、B两点,则A(-3,0),B(1,0). 依题意翻折后的图象如图所示. 当直线y=x+b经过A点时,可得b=; 当直线y=x+b经过B点时,可得b=-. 由图象可知,符合题意的b(b<3)的取值范围为<b<. (3)依图象得,要图象y=x+b(b小于k)与二次函数图象有两个公共点时,显然有两段. 而因式分解得y=2x2+4x-6=2(x-1)(x+3), 第一段,当y=x+b过(1,0)时,有一个交点,此时b=-. 当y=x+b过(-3,0)时,有三个交点,此时b=.而在此中间即为两个交点,此时-<b<. 第二段,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折后, 开口向下的部分的函数解析式为y=-2(x-1)(x+3). 显然, 当y=x+b与y=-2(x-1)(x+3)(-3<x<1)相切时,y=x+b与这个二次函数图象有三个交点,若直线再向上移,则只有两个交点. 因为b<3,而y=x+b(b小于k,k=3),所以当b=3时,将y=x+3代入二次函数y=-2(x-1)(x+3)整理得, 4x2+9x-6=0,△>0,所以方程有两根,那么肯定不将有直线与两截结合的二次函数图象相交只有两个公共点.这种情况故舍去. 综上,-<b<.
复制答案
考点分析:
相关试题推荐
如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.

manfen5.com 满分网 查看答案
如图①,某产品标志的截面图形由一个等腰梯形和抛物线的一部分组成,在等腰梯形ABCD中,AB∥DC,AB=20cm,DC=30CM,∠ADC=45度.对于抛物线部分,其顶点为CD的中点O,且过A、B两点,开口终端的连线MN平行且等于DC.
(1)如图①所示,在以点O为原点,直线OC为x轴的坐标系内,点C的坐标为(15,0),试求A、B两点的坐标;
(2)求标志的高度(即标志的最高点到梯形下底所在直线的距离);
(3)现根据实际情况,需在标志截面图形的梯形部分的外围均匀镀上一层厚度为3cm的保护膜,如图②,请在图中补充完整镀膜部分的示意图,并求出镀膜的外围周长.

manfen5.com 满分网 查看答案
如图,直线y=-manfen5.com 满分网x+6分别与x轴、y轴交于A、B两点;直线y=manfen5.com 满分网x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).
(1)求点C的坐标.
(2)当0<t<5时,求S与t之间的函数关系式.
(3)求(2)中S的最大值.
(4)当t>0时,直接写出点(4,manfen5.com 满分网)在正方形PQMN内部时t的取值范围.
参考公式:二次函数y=ax2+bx+c图象的顶点坐标为(manfen5.com 满分网).

manfen5.com 满分网 查看答案
如图,抛物线y=ax2-x-manfen5.com 满分网与x轴正半轴交于点A(3,0),以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF.
(1)求a的值;
(2)求点F的坐标.

manfen5.com 满分网 查看答案
如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,A、C两点的坐标分别为A(-3,0)、C(0,manfen5.com 满分网),且当x=-4和x=2时二次函数的函数值y相等.
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为项点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.