满分5 > 初中数学试题 >

已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x...

已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据抛物线过C(0,4)点,可确定c=4,然后可将A的坐标代入抛物线的解析式中,即可得出二次函数的解析式. (2)可先设Q的坐标为(m,0);通过求△CEQ的面积与m之间的函数关系式,来得出△CQE的面积最大时点Q的坐标. △CEQ的面积=△CBQ的面积-△BQE的面积. 可用m表示出BQ的长,然后通过相似△BEQ和△BCA得出△BEQ中BQ边上的高,进而可根据△CEQ的面积计算方法得出△CEQ的面积与m的函数关系式,可根据函数的性质求出△CEQ的面积最大时,m的取值,也就求出了Q的坐标. (3)本题要分三种情况进行求【解析】 ①当OD=OF时,OD=DF=AD=2,又有∠OAF=45°,那么△OFA是个等腰直角三角形,于是可得出F的坐标应该是(2,2).由于P,F两点的纵坐标相同,因此可将F的纵坐标代入抛物线的解析式中即可求出P的坐标. ②当OF=DF时,如果过F作FM⊥OD于M,那么FM垂直平分OD,因此OM=1,在直角三角形FMA中,由于∠OAF=45°,因此FM=AM=3,也就得出了F的纵坐标,然后根据①的方法求出P的坐标. ③当OD=OF时,OF=2,由于O到AC的最短距离为2,因此此种情况是不成立的. 综合上面的情况即可得出符合条件的P的坐标. 【解析】 (1)由题意,得 解得(2分) ∴所求抛物线的解析式为:y=-x2+x+4. (2)设点Q的坐标为(m,0),过点E作EG⊥x轴于点G. 由-x2+x+4=0, 得x1=-2,x2=4 ∴点B的坐标为(-2,0) ∴AB=6,BQ=m+2 ∵QE∥AC ∴△BQE∽△BAC ∴ 即 ∴ ∴S△CQE=S△CBQ-S△EBQ =BQ•CO-BQ•EG =(m+2)(4-) = =-(m-1)2+3 又∵-2≤m≤4 ∴当m=1时,S△CQE有最大值3,此时Q(1,0). (3)存在.在△ODF中. (ⅰ)若DO=DF ∵A(4,0),D(2,0) ∴AD=OD=DF=2 又在Rt△AOC中,OA=OC=4 ∴∠OAC=45度 ∴∠DFA=∠OAC=45度 ∴∠ADF=90度.此时,点F的坐标为(2,2) 由-x2+x+4=2, 得x1=1+,x2=1- 此时,点P的坐标为:P(1+,2)或P(1-,2). (ⅱ)若FO=FD,过点F作FM⊥x轴于点M 由等腰三角形的性质得:OM=OD=1 ∴AM=3 ∴在等腰直角△AMF中,MF=AM=3 ∴F(1,3) 由-x2+x+4=3, 得x1=1+,x2=1- 此时,点P的坐标为:P(1+,3)或P(1-,3). (ⅲ)若OD=OF ∵OA=OC=4,且∠AOC=90° ∴AC= ∴点O到AC的距离为,而OF=OD=2,与OF≥2矛盾,所以AC上不存在点使得OF=OD=2, 此时,不存在这样的直线l,使得△ODF是等腰三角形 综上所述,存在这样的直线l,使得△ODF是等腰三角形 所求点P的坐标为:P(1+,2)或P(1-,2)或P(1+,3)或P(1-,3).
复制答案
考点分析:
相关试题推荐
如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC,BC,过A,B,C三点作抛物线.
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连接BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.
第三问改成,在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到什么位置时,△PCD的面积是△BCD面积的三分之一,求此时点P的坐标.

manfen5.com 满分网 查看答案
一条抛物线经过原点O与A(4,0)点,顶点B在直线y=kx+2k(k≠0)上.将这条抛物线先向上平移m(m>0)个单位,再向右平移m个单位,得到的抛物线的顶点B′仍然在直线y=kx+2k上,点A移动到了点A′.
(1)求k值及原抛物线的表达式;
(2)求使△A′OB′的面积是6032的m值.
查看答案
抛物线y=ax2+bx+c(a≠0)的顶点为M,与x轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b.若关于x的一元二次方程(m-a)x2+2bx+(m+a)=0有两个相等的实数根.
(1)判断△ABM的形状,并说明理由.
(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形.
(3)若平行于x轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与x轴相切,求该圆的圆心坐标.
查看答案
如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.

manfen5.com 满分网 查看答案
在平行四边形ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图1)
(1)在图1中画图探究:
①当P为射线CD上任意一点(P1不与C重合)时,连接EP1;绕点E逆时针旋转90°得到线段EG1.判断直线FG1与直线CD的位置关系,并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2.判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论.
(2)若AD=6,tanB=manfen5.com 满分网,AE=1,在①的条件下,设CP1=x,S△P1FG1=y,求y与x之间的函数关系式,并写出自变量x的取值范围.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.