满分5 > 初中数学试题 >

已知直线y=-x-1与x、y轴分别交于A、B曰两点,将其向右平移4个单位所得直线...

已知直线y=-x-1与x、y轴分别交于A、B曰两点,将其向右平移4个单位所得直线分别与x、y轴交于C、D两点.
(1)求C、D两点的坐标;
(2)求过A、C、D三点的抛物线的解析式;
(3)在(2)中所求抛物线的对称轴上,是否存在点P,使△PAB为等腰三角形?若存在,求出所有的点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)求出直线CD的解析式,再求出直线与坐标轴的交点坐标. (2)已知A、C、D三点的坐标,根据待定系数法就可以求出抛物线的解析式. (3)应分AB为腰和AB为底两种情况进行讨论. 【解析】 (1)把直线y=-x-1向右平移四个单位长度所得的直线的解析式是:y=-(x-4)-1, 即y=-x+3,在各个函数中分别令x=0,y=0, 解得y=3和x=3, 因而交点坐标是:C(3,0)D(0,3) (2)设解析式为y=ax2+bx+c 把A(-l,0)D(0,3)C(3,0)代入得: 解得: ∴过A、C、D三点的抛物线的解析式为y=-x2+2x+3; (3)存在.∵y=x2+2x+3的对称轴为直线x=-,即x=1 当AB为腰时,易知点P坐标为(1,0) 当AB为底时,点P在AB垂直平分线y=x和x=1的交点处,此时点P的坐标为(1,1) 综上所述这样的点P有(1,0)和(1,1)两个.
复制答案
考点分析:
相关试题推荐
如图,二次函数y=ax2-5ax+4a(a≠0)的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点C关于抛物线对称轴的对称点为D,连接BD.
(1)求A、B两点的坐标;
(2)若AD⊥BC,垂足为P,求二次函数的表达式;
(3)在(2)的条件下,若直线x=m把△ABD的面积分为1:2的两部分,求m的值.

manfen5.com 满分网 查看答案
已知点A(a,y1)、B(2a,y2)、C(3a,y3)都在抛物线y=5x2+12x上.
(1)求抛物线与x轴的交点坐标;
(2)当a=1时,求△ABC的面积;
(3)是否存在含有y1,y2,y3,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.
查看答案
如图,在直角坐标系xOy中,点P为函数y=manfen5.com 满分网x2在第一象限内的图象上的任一点,点A的坐标为(0,1),直线l过B(0,-1)且与x轴平行,过P作y轴的平行线分别交x轴,l于C,Q,连接AQ交x轴于H,直线PH交y轴于R.
(1)求证:H点为线段AQ的中点;
(2)求证:①四边形APQR为平行四边形;②平行四边形APQR为菱形;
(3)除P点外,直线PH与抛物线y=manfen5.com 满分网x2有无其它公共点并说明理由.

manfen5.com 满分网 查看答案
已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC,BC,过A,B,C三点作抛物线.
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连接BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.
第三问改成,在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到什么位置时,△PCD的面积是△BCD面积的三分之一,求此时点P的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.