满分5 > 初中数学试题 >

已知:抛物线y=x2+(b-1)x+c经过点P(-1,-2b). (1)求b+c...

已知:抛物线y=x2+(b-1)x+c经过点P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求这条抛物线的顶点坐标;
(3)若b>3,过点P作直线PA⊥y轴,交y轴于点A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)
(1)因为抛物线y=x2+(b-1)x+c经过点P(-1,-2b),所以将点P代入解析式即可求得; (2)因为b=3,所以求得c的值,即可求得抛物线的解析式,然后利用配方法求出顶点坐标; (3)解此题的关键是首先确定函数的草图,即开口方向是向上,对称轴为x=,在y轴的左侧,根据题意确定点B的坐标;因为点P与点B关于对称轴对称,所以确定对称轴方程,从而求得b、c的值,求得函数解析式. 【解析】 (1)依题意得:(-1)2+(b-1)(-1)+c=-2b (2分) ∴b+c=-2.(3分) (2)当b=3时,c=-5,(4分) ∴y=x2+2x-5=(x+1)2-6, ∴抛物线的顶点坐标是(-1,-6).(6分) (3)当b>3时,抛物线对称轴x= ∴对称轴在点P的左侧 因为抛物线是轴对称图形,P(-1,-2b)且BP=2PA ∴B(-3,-2b) (9分) ∴=-2, ∴b=5 (10分) 又b+c=-2, ∴c=-7 (11分) ∴抛物线所对应的二次函数关系式为y=x2+4x-7. (12分) 解法2:(3) 当b>3时,-b<-3,1-b<-2,则x=-=<-1, ∴对称轴在点P的左侧,因为抛物线是轴对称图形 ∵P(-1,-2b),且BP=2PA, ∴B(-3,-2b) (9分) ∴(-3)2-3(b-1)+c=-2b(10分) 又b+c=-2, 解得b=5,c=-7(11分) 这条抛物对应的二次函数关系式为y=x2+4x-7.(12分) 解法3:(3)∵b+c=-2, ∴c=-b-2 ∴y=x2+(b-1)x-b-2( 7分) BP∥x轴, ∴x2+(b-1)x-b-2=-2b( 8分) 即x2+(b-1)x+b-2=0 解得:x1=-1,x2=-(b-2),即xB=-(b-2)10分 由BP=2PA, ∴-1+(b-2)=2×1 ∴b=5,c=-7  (11分) ∴抛物线所对应的二次函数关系式为y=x2+4x-7.(12分)
复制答案
考点分析:
相关试题推荐
已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,-6)和原点.
(1)求抛物线的函数关系式;
(2)若过点B的直线y=kx+b与抛物线交于点C(2,m),请求出△OBC的面积S的值;
(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E.直线PF与直线DC及两坐标轴围成矩形OFED,是否存在点P,使得△OCD与△CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知抛物线y=-manfen5.com 满分网(x+2)2+k与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,C点在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根.
(1)求A、B、C三点的坐标;
(2)在平面直角坐标系内画出抛物线的大致图象并标明顶点坐标;
(3)连AC、BC,若点E是线段AB上的一个动点(与A、B不重合),过E作EF∥AC交BC于F,连CE,设AE=m,△CEF的面积为S,求S与m的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上说明S是否存在最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
查看答案
manfen5.com 满分网如图,四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线AC折叠,使点B落在D处,AD交OC于E.
(1)求OE的长;
(2)求过O,D,C三点抛物线的解析式;
(3)若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1个单位长度的速度匀速运动,当运动时间t(秒)为何值时,直线PF把△FAC分成面积之比为1:3的两部分.
查看答案
锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0)
(1)△ABC中边BC上高AD=______
(2)当x=______时,PQ恰好落在边BC上(如图1);
(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?
manfen5.com 满分网
查看答案
如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点.将抛物线L1向右平移2个单位后得到抛物线L2,L2交x轴于C,D两点.
(1)求抛物线L2对应的函数表达式;
(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由;
(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P关于原点的对称点Q是否在抛物线L2上?请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.