满分5 > 初中数学试题 >

如图,圆B切y轴于原点O,过定点A(-,0)作圆B的切线交圆于点P,已知tan∠...

如图,圆B切y轴于原点O,过定点A(-manfen5.com 满分网,0)作圆B的切线交圆于点P,已知tan∠PAB=manfen5.com 满分网,抛物线C经过A,P两点.
(1)求圆B的半径.
(2)若抛物线C经过点B,求其解析式.
(3)设抛物线C交y轴于点M,若三角形APM为直角三角形,求点M的坐标.

manfen5.com 满分网
(1)因为AP是⊙B的切线,所以连接PB可构造出直角三角形,利用直角三角形的性质及特殊角的三角函数值即可求出圆B的半径. (2)根据⊙B的半径可求出B点坐标,利用勾股定理或切割线定理可求出AP的距离,根据AP、BP的长可求出P点坐标,再利用待定系数法即可求出二次函数的解析式. (3)求出P点坐标和A点坐标,设出M点坐标为(0,t),根据勾股定理及其逆定理解答. 【解析】 (1)连接PB,则PB⊥AP,设PB=r, ∵tan∠PAB=, ∴∠PAB=30°, 故r=(OA+OB)=(2+r), 解得r=2. (2)如P在第一象限,OP与x轴的夹角=2∠PAB=60° 则:P点坐标(2cos60°,2sin60°), 即(,3) B、A关于y轴对称,所以抛物线顶点必在y轴上, 设为(0,m) 抛物线解析式:y-m=kx2 将(,3),(2,0),代入, 得:3-m=3k,-m=12k,m=4,k=- 抛物线解析式:y=-x2+4 若P点在四象限,则:P点坐标(,-3) 则抛物线解析式:y=x2-4 (3)由于P点坐标为(,3),A点坐标为(-2,0),M点坐标为(0,t). 根据勾股定理,①PA2=PM2+AM2,36=t2-6t+12+12+t2, 解得t=; ②PM2=PA2+AM2,t2-6t+12=36+12+t2,解得t=-6; ③AM2=PA2+PM2,12+t2=36+t2-6t+12,解得t=6. 于是M点坐标为(0,-6),(0,6),(0,),(0,).
复制答案
考点分析:
相关试题推荐
两个直角边为6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如图一所示的位置放置,点O与E重合.
(1)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长度的速度向右运动,当点E运动到与点B重合时停止,设运动x秒后,Rt△AOB和Rt△CED的重叠部分面积为y,求y与x之间的函数关系式;
(2)当Rt△CED以(1)中的速度和方向运动,运动时间x=2秒时,Rt△CED运动到如图二所示的位置,若抛物线y=manfen5.com 满分网x2+bx+c过点A,G,求抛物线的解析式;
(3)现有一动点P在(2)中的抛物线上运动,试问点P在运动过程中是否存在点P到x轴或y轴的距离为2的情况?若存在,请求出点P的坐标;若不存在,请说明理由.
manfen5.com 满分网
查看答案
如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.
(1)求∠ACB的大小;
(2)写出A,B两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知抛物线y=ax2-2x+c与它的对称轴相交于点A(1,-4),与y轴交于C,与x轴正半轴交于B.
(1)求这条抛物线的函数关系式;
(2)设直线AC交x轴于D,P是线段AD上一动点(P点异于A,D),过P作PE∥x轴交直线AB于E,过E作EF⊥x轴于F,求当四边形OPEF的面积等于manfen5.com 满分网时点P的坐标.
manfen5.com 满分网
查看答案
如图1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线y=kx-1(k≠0)将四边形ABCD面积二等分,求k的值;
(3)如图2,过点E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.
manfen5.com 满分网
查看答案
如图,已知半径为1的⊙O1与x轴交于A,B两点,OM为⊙O1的切线,切点为M,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A,B两点.
(1)求二次函数的解析式;
(2)求切线OM的函数解析式;
(3)线段OM上存在一点P,使得以P,O,A为顶点的三角形与△OO1M相似.请问有几个符合条件的点P并分别求出它们的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.