已知抛物线y=ax
2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x
2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,抛物线y=a(x+1)(x-5)与x轴的交点为M,N.直线y=kx+b与x轴交于P(-2,0),与y轴交于C.若A,B两点在直线y=kx+b上,且AO=BO=
,AO⊥BO.D为线段MN的中点,OH为Rt△OPC斜边上的高.
(1)OH的长度等于______;k=______,b=______;
(2)是否存在实数a,使得抛物线y=a(x+1)(x-5)上有一点E,满足以D,N,E为顶点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB•PG<10
,写出探索过程.
查看答案
在平面直角坐标系中,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=1,OC=2.将矩形OABC绕点O顺时针旋转90°,得到矩形DEFG(如图1).
(1)若抛物线y=-x
2+bx+c经过点B和F,求此抛物线的解析式;
(2)将矩形DEFG以每秒1个单位长度的速度沿x轴负方向平移,平移t秒时,所成图形如图2所示.
①图2中,在0<t<1的条件下,连接BF,BF与(1)中所求抛物线的对称轴交于点Q,设矩形DEFG与矩形OABC重合部分的面积为S
1,△AQF的面积为S
2,试判断S
1+S
2的值是否发生变化?如果不变,求出其值;
②在0<t<3的条件下,P是x轴上一点,请你探究:是否存在t值,使以PB为斜边的Rt△PFB与Rt△AOC相似?若存在,直接写出满足条件t的值及点P的坐标;若不存在,请说明理由(利用图3分析探索).
查看答案
如图,在矩形ABCD中,AB=9,AD=3
,点P是边BC上的动点(点P不与点B,点C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点,设CP的长度为x,△PQR与矩形ABCD重叠部分的面积为y.
(1)求∠CQP的度数;
(2)当x取何值时,点R落在矩形ABCD的AB边上;
(3)①求y与x之间的函数关系式;
②当x取何值时,重叠部分的面积等于矩形面积的
.
查看答案
已知二次函数y
1=ax
2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-
).
(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图象;
(2)若反比例函数y
2=
(x>0)的图象与二次函数y
1=ax
2+bx+c(a≠0)的图象在第一象限内交于点A(x
,y
),x
落在两个相邻的正整数之间,请你观察图象,写出这两个相邻的正整数;
(3)若反比例函数y
2=
(x>0,k>0)的图象与二次函数y
1=ax
2+bx+c(a≠0)的图象在第一象限内的交点A,点A的横坐标x
满足2<x
<3,试求实数k的取值范围.
查看答案
如图,在平面直角坐标系中,抛物线经过A(-1,0),B(4,0),C(0,-4),⊙M是△ABC的外接圆,M为圆心.
(1)求抛物线的解析式;
(2)求阴影部分的面积;
(3)在x轴的正半轴上有一点P,作PQ⊥x轴交BC于Q,设PQ=k,△CPQ的面积为S,求S关于k的函数关系式,并求出S的最大值.
查看答案