满分5 > 初中数学试题 >

如图,抛物线y1=-ax2-ax+1经过点P(-,),且与抛物线y2=ax2-a...

如图,抛物线y1=-ax2-ax+1经过点P(-manfen5.com 满分网manfen5.com 满分网),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

manfen5.com 满分网
(1)抛物线y1=-ax2-ax+1经过点P(-,),则把P点的坐标代入解析式就可以求出A的值. (2)求出A的值以后,两个函数的解析式就可以求出,在解析式中,令y=0就可以求出函数与x轴的交点坐标,得出M,N,E,F四点的坐标. (3)线段CD的长度可以用x表示出来,即y2与y1的差.CD的长度就可以表示为x的一个二次函数,求CD的最值,就是求函数的最值问题. 【解析】 (1)∵点在抛物 y1=-ax2-ax+1上, ∴,(2分) 解得.(3分) (2)如图,由(1)知, ∴抛物线,.(5分) 当时,解得x1=-2,x2=1. ∵点M在点N的左边, ∴xM=-2,xN=1.(6分) 当时,解得x3=-1,x4=2. ∵点E在点F的左边, ∴xE=-1,xF=2.(7分) ∵xM+xF=0,xN+xE=0, ∴点M与点F对称,点N与点E对称.(8分) (3)∵. ∴抛物线y1开口向下,抛物线y2开口向上.(9分) 根据题意,得CD=y1-y2=.(11分) ∵xA≤x≤xB, ∴当x=0时,CD有最大值2.(12分)
复制答案
考点分析:
相关试题推荐
如图,已知平面直角坐标系xoy中,有一矩形纸片OABC,O为坐标原点,AB∥x轴,B(3,manfen5.com 满分网),现将纸片按如图折叠,AD,DE为折痕,∠OAD=30度.折叠后,点O落在点O1,点C落在线段AB点C1处,并且DO1与DC1在同一直线上.
(1)求折痕AD所在直线的解析式;
(2)求经过三点O,C1,C的抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,⊙P与两坐标轴都相切时,求⊙P半径R的值.

manfen5.com 满分网 查看答案
如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为(m,manfen5.com 满分网)(其中m>0),在BC边上选取适当的点E和点F,将△OCE沿OE翻折,得到△OGE;再将△ABF沿AF翻折,恰好使点B与点G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求过点O,G,A的抛物线的解析式和对称轴;
(3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程).

manfen5.com 满分网 查看答案
如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax2+bx+c经过x轴上的点A,B.
(1)求点A,B,C的坐标;
(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式.

manfen5.com 满分网 查看答案
如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0<x<8),△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.
(1)求y1与x的函数关系,并在图2中画出y1的图象;
(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;
(3)在图2中,点G是x轴正半轴上一点0<OG<6,过G作EF垂直于x轴,分别交y1、y2的图象于点E、F.
①说出线段EF的长在图1中所表示的实际意义;
②当0<x<6时,求线段EF长的最大值.

manfen5.com 满分网 查看答案
如图,抛物线c1:y=x2-2x-3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.点P为线段BC上一点,过点P作直线l⊥x轴于点F,交抛物线c1点E.
(1)求A、B、C三点的坐标;
(2)当点P在线段BC上运动时,求线段PE长的最大值;
(3)当PE为最大值时,把抛物线c1向右平移得到抛物线c2,抛物线c2与线段BE交于点M,若直线CM把△BCE的面积分为1:2两部分,则抛物线c1应向右平移几个单位长度可得到抛物线c2

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.