如图,已知二次函数y=ax
2+bx+c的图象经过三点A(-1,0),B(3,0),C(0,3),它的顶点为M,又正比例函数y=kx的图象于二次函数相交于两点D、E,且P是线段DE的中点.
(1)求该二次函数的解析式,并求函数顶点M的坐标;
(2)已知点E(2,3),且二次函数的函数值大于正比例函数时,试根据函数图象求出符合条件的自变量x的取值范围;
(3)0<k<2时,求四边形PCMB的面积s的最小值.
【参考公式:已知两点D(x
1,y
1),E(x
2,y
2),则线段DE的中点坐标为
】
考点分析:
相关试题推荐
已知抛物线M:y=-x
2+2mx+n(m,n为常数,且m>0,n>0)的顶点为A,与y轴交于点C;抛物线N与抛物线M关于y轴对称,其顶点为B,连接AC,BC,AB.
问抛物线M上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.
说明:
(1)如果你反复探索,没有解决问题,请写出探索过程(要求至少写3步);
(2)在你完成(1)之后,可以从①、②中选取一个条件,完成解答(选取①得7分;选取②得10分).
①n=1;②n=2.
查看答案
如图1,P
1、P
2、P
3、…、P
n分别是抛物线y=x
2与直线y=x、y=2x、y=3x、…、y=kx的交点,连接P
1P
2、P
2P
3,…,P
k-1P
k.
(1)求△OP
1P
2的面积,并直接写出△OP
2P
3的面积;
(2)如图2,猜想△OP
k-1P
k的面积,并说明理由;
(3)若将抛物线y=x
2改为抛物线y=ax
2,其它条件不变,猜想△OP
k-1P
k的面积(直接写出答案).
查看答案
如图,在平面直角坐标系中,抛物线y=-
x
2+bx+c经过A(0,-4)、B(x
1,0)、C(x
2,0)三点,且x
2-x
1=5.
(1)求b、c的值;
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形;若不存在,请说明理由.
查看答案
如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-
x+2与y轴的交点A和点M(-
,0).
(1)求这条抛物线所对应的二次函数的关系式;
(2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由;
(3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的四边形是平行四边形.
查看答案
如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为x轴,过D且垂直于AB的直线为y轴建立平面直角坐标系.
(1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L;
(3)若P是抛物线的对称轴L上的点,那么使△PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)
查看答案