满分5 > 初中数学试题 >

△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△A...

△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.
(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围);
(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;
(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?

manfen5.com 满分网
(1)分两种情况,点P可以在AC上时和当点P在BC上时,利用三角函数分别用含t的代数式表示出PM,AM,再用S△APM=AM•PM得出y与t的函数关系式, (2)当PM=QN时,四边形MNQP为矩形,建立含t的方程,求得t的值, (3)以C,P,Q为顶点的三角形与△ABC相似有两种情况,△PQC∽△ABC时和△QPC∽△ABC,分别相似三角形的判定和性质,求得相对应的t的值. 【解析】 (1)当点P在AC上时,∵AM=t,∴PM=AM•tan60°=t. ∴y=t•t=t2(0≤t≤1). 当点P在BC上时,PM=BM•tan30°=(4-t). y=t•(4-t)=-t2+t(1≤t≤3). (2)∵AC=2,∴AB=4.∴BN=AB-AM-MN=4-t-1=3-t. ∴QN=BN•tan30°=(3-t). 由条件知,若四边形MNQP为矩形,需PM=QN,即t=(3-t), ∴t=.∴当t=s时,四边形MNQP为矩形. (3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB, ∴△PQC∽△ABC. 除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=. ∵=cos60°=, ∴AP=2AM=2t. ∴CP=2-2t. ∵=cos30°=, ∴BQ=(3-t). 又∵BC=2, ∴CQ=2. ∴,. ∴当s或s时,以C,P,Q为顶点的三角形与△ABC相似.
复制答案
考点分析:
相关试题推荐
已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b=-4ac.
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在,说明理由;若存在,求出点C的坐标,并求出此时圆的圆心点P的坐标;
(3)根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系?

manfen5.com 满分网 查看答案
如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90°,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S.
(1)求折痕EF的长;
(2)是否存在某一时刻t使平移中直角顶点C经过抛物线y=x2+4x+3的顶点?若存在,求出t值;若不存在,请说明理由;
(3)直接写出S与t的函数关系式及自变量t的取值范围.

manfen5.com 满分网 查看答案
已知:如图,Rt△AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点且OC=OB,抛物线y=(x-2)(x-m)-(p-2)(p-m)(m、p为常数且m+2≥2p>0)经过A、C两点.
(1)用m、p分别表示OA、OC的长;
(2)当m、p满足什么关系时,△AOB的面积最大.

manfen5.com 满分网 查看答案
如图,在直角坐标系中,以点M(3,0)为圆心,以6为半径的圆分别交x轴的正半轴于点A,交x轴的负半轴交于点B,交y轴的正半轴于点C,过点C的直线交x轴的负半轴于点D(-9,0)
(1)求A,C两点的坐标;
(2)求证:直线CD是⊙M的切线;
(3)若抛物线y=x2+bx+c经过M,A两点,求此抛物线的解析式;
(4)连接AC,若(3)中抛物线的对称轴分别与直线CD交于点E,与AC交于点F.如果点P是抛物线上的动点,是否存在这样的点P,使得S△PAM:S△CEF=manfen5.com 满分网:3?若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果均保留根号)

manfen5.com 满分网 查看答案
直线y=-manfen5.com 满分网x+6分别与x轴、y轴交于点A、B,经过A、B两点的抛物线与x轴的另一交点为C,且其对称轴为x=3.
(1)求这条抛物线对应的函数关系式;
(2)设D(x,y)是抛物线在第一象限内的一个点,点D到直线AB的距离为d、试写出d关于x的函数关系式,这个函数是否有最大值或最小值?如果有,并求这个值和此时点D的坐标;如果没有,说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.