如图(1),已知在△ABC中,AB=AC=10,AD为底边BC上的高,且AD=6.将△ACD沿箭头所示的方向平移,得到△A′CD′.如图(2),A′D′交AB于E,A′C分别交AB、AD于G、F.以D′D为直径作⊙O,设BD′的长为x,⊙O的面积为y.
(1)求y与x之间的函数关系式及自变量x的取值范围;
(2)连接EF,求EF与⊙O相切时x的值;
(3)设四边形ED′DF的面积为S,试求S关于x的函数表达式,并求x为何值时,S的值最大,最大值是多少?
考点分析:
相关试题推荐
已知,如图,直线l经过A(4,0)和B(0,4)两点,它与抛物线y=ax
2在第一象限内相交于点P,又知△AOP的面积为4,求a的值.
查看答案
如图,已知四边形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直线BM的解析式;
(2)求过A、M、B三点的抛物线的解析式;
(3)在(2)中的抛物线上是否存在点P,使△PMB构成以BM为直角边的直角三角形?若没有,请说明理由;若有,则求出一个符合条件的P点的坐标.
查看答案
如图,抛物线y=x
2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,把AB所在的直线沿y轴向上平移,使它经过原点O,得到直线l,设P是直线l上有一动点.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P的坐标;
(3)设以点A、B、O、P为顶点的四边形的面积为S,点P的横坐标为x,当
≤S≤
时,求x的取值范围.
查看答案
如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为BC边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F.FE与DC的延长线相交于点G,连接DE,DF.
(1)求证:△BEF∽△CEG;
(2)当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由;
(3)设BE=x,△DEF的面积为y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少?
查看答案
如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点B在第一象限内,且|AB|=3
,sin∠OAB=
.
(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;
(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若将点O、点A分别变换为点Q(-2k,0)、点R(5k,0)(k>1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为S
△QMN,△QNR的面积S
△QNR,求S
△QMN:S
△QNR的值.
查看答案