满分5 > 初中数学试题 >

如图,圆在正方形的内部沿着正方形的四条边运动一周,并且始终保持与正方形的边相切....

如图,圆在正方形的内部沿着正方形的四条边运动一周,并且始终保持与正方形的边相切.
(1)在图中,把圆运动一周覆盖正方形的区域用阴影表示出来;
(2)当圆的直径等于正方形的边长一半时,该圆运动一周覆盖正方形的区域的面积是否最大?并说明理由.
manfen5.com 满分网
(1)本题要先求出覆盖面积与圆的半径的函数关系式,圆在正方形中运动时覆盖的部分如图所示,中间正方形的面积易求得,而大正方形四角的面积可用以圆的直径为边长的小正方形的面积-一个圆的面积来求得. (2)设出正方形的边长和圆的半径,根据上面得出面积求法可得出关于覆盖部分面积和圆半径的函数关系式,根据函数的性质即可判断出当圆的直径等于正方形的边长一半时,该圆运动一周覆盖正方形的区域的面积是否最大. 【解析】 (1)圆运动一周覆盖正方形的区域用阴影表示如下: (2)圆的直径等于正方形的边长一半时,覆盖区域的面积不是最大,理由如下: 设正方形的边长为a,圆的半径为r,覆盖区域的面积为s. ∵圆在正方形的内部, ∴0<r≤, 由图可知:S=a2-[(a-4r)2+4r2-πr2], =-(20-π)r2+8ar, =-(20-π)(r-)2+, ∵0<<, ∴当r=时,S有最大值, ∵≠, ∴圆的直径等于正方形的边长一半时,面积不是最大.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,⊙O1的直径OA在x轴上,O1A=2,直线OB交⊙O1于点B,∠BOA=30°,P为经过O、B、A三点的抛物线的顶点.
(1)求点P的坐标;
(2)求证:PB是⊙O1的切线.

manfen5.com 满分网 查看答案
如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为manfen5.com 满分网.设⊙M与y轴交于D,抛物线的顶点为E.
(1)求m的值及抛物线的解析式;
(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知平行四边形ABCD的顶点A的坐标是(0,16),AB平行于x轴,B,C,D三点在抛物线y=manfen5.com 满分网x2上,DC交y轴于N点,一条直线OE与AB交于E点,与DC交于F点,如果E点的横坐标为a,四边形ADFE的面积为manfen5.com 满分网
(1)求出B,D两点的坐标;
(2)求a的值;
(3)作△ADN的内切圆⊙P,切点分别为M,K,H,求tan∠PFM的值.

manfen5.com 满分网 查看答案
实验与探究:
(1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点C的坐标分别是____________
manfen5.com 满分网
(2)在图4中,平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);
manfen5.com 满分网
归纳与发现:
(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为______;纵坐标b,d,n,f之间的等量关系为______
(不必证明);运用与推广:
(4)在同一直角坐标系中有抛物线y=x2-(5c-3)x-c和三个点manfen5.com 满分网manfen5.com 满分网,H(2c,0)(其中c>0).问当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.
查看答案
如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线y=manfen5.com 满分网x2+bx+c过点A和B,与y轴交于点C.
(1)求点C的坐标,并画出抛物线的大致图象;
(2)点Q(8,m)在抛物线y=manfen5.com 满分网x2+bx+c上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值;
(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.