如图,抛物线y=x
2-2x-3与x轴分别交于A,B两点.
(1)求A,B两点的坐标;
(2)求抛物线顶点M关于x轴对称的点M′的坐标,并判断四边形AMBM′是何特殊平行四边形.(不要求说明理由)
考点分析:
相关试题推荐
关于x的二次函数y=-x
2+(k
2-4)x+2k-2以y轴为对称轴,且与y轴的交点在x轴上方.
(1)求此抛物线的解析式,并在下面建立直角坐标系画出函数的草图;
(2)设A是y轴右侧抛物线上的一个动点,过点A作AB垂直于x轴于点B,再过点A作x轴的平行线交抛物线于点D,过点D作DC垂直于x轴于点C,得到矩形ABCD.设矩形ABCD的周长为l,点A的横坐标为x,试求l关于x的函数关系式;
(3)当点A在y轴右侧的抛物线上运动时,矩形ABCD能否成为正方形?若能,请求出此时正方形的周长;若不能,请说明理由.
查看答案
如图,已知经过原点的抛物线y=-2x
2+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P.
(1)求点A的坐标,并判断△PCA存在时它的形状(不要求说理);
(2)在x轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含m的式子表示);若不存在,请说明理由;
(3)设△CDP的面积为S,求S关于m的关系式.
查看答案
如图,抛物线与x轴交于A(x
1,0),B(x
2,0)两点,且x
1>x
2,与y轴交于点C(0,4),其中x
1,x
2是方程x
2-2x-8=0的两个根.
(1)求这条抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;
(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
查看答案
已知两个关于x的二次函数y
1与y
2,y
1=a(x-k)
2+2(k>0),y
1+y
2=x
2+6x+12;当x=k时,y
2=17;且二次函数y
2的图象的对称轴是直线x=-1.
(1)求k的值;
(2)求函数y
1,y
2的表达式;
(3)在同一直角坐标系内,问函数y
1的图象与y
2的图象是否有交点?请说明理由.
查看答案
已知抛物线y=3ax
2+2bx+c,
(Ⅰ)若a=b=1,c=-1,求该抛物线与x轴公共点的坐标;
(Ⅱ)若a=b=1,且当-1<x<1时,抛物线与x轴有公共点,求c的取值范围;
(Ⅲ)若a+b+c=0,且x
1=0时,对应的y
1>0;x
2=1时,对应的y
2>0,试判断当0<x<1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.
查看答案