满分5 > 初中数学试题 >

如图,抛物线y=x2+mx+n(其中m,n为常数且m>n)与y轴正半轴交于A点,...

如图,抛物线y=manfen5.com 满分网x2+manfen5.com 满分网mx+n(其中m,n为常数且m>n)与y轴正半轴交于A点,它的对称轴交x轴正半轴于C点,抛物线的顶点为P,Rt△ABC的直角顶点B在对称轴上,当它绕点C按顺时针方向旋转90°得到Rt△A′B′C.
(1)写出点A,P,A′的坐标(用含m,n的式子表示);
(2)若直线BB'交y轴于E点,求证:线段B′E与AA′互相平分;
(3)若点A′在抛物线上且Rt△ABC的面积为1时,请求出抛物线的解析式并判断在抛物线的对称轴上是否存在点D,使△AA′D为等腰三角形?若存在,请直接写出所有符合条件的D点坐标;若不存在,请说明理由.
manfen5.com 满分网
(1)根据抛物线的解析式易得出A点和P点的坐标.根据旋转的性质可看得出AB=A′B′,BC=B′C,因此A′的横坐标为P点的横坐标与A点横坐标的和,而A′的纵坐标与P点的横坐标相等,由此可得出A′的坐标. (2)在直角三角形BCB′中,BC=B′C,因此三角形BCB′是等腰直角三角形,即∠EBA=∠BB′C=45°,可得出EA=AB=A′B′,这样就证得了四边形AEA′B′是平行四边形,那么根据平行四边形的性质即可得出所证的条件. (3)①根据A′在抛物线上,将A′的坐标代入抛物线的解析式中可得出一个关于m,n的等量关系.已知了三角形ABC的面积为1,可得出另一个关于m、n的等量关系,联立两式即可求出m、n的值,也就求出了A、A′的坐标. ②本题可分三种情况: 一:AD=A′D;二:AD=AA′;三:AA′=A′D; 可根据对称轴方程设出D点坐标,然后根据坐标系中两点间的距离公式来列等量关系进而可求出D的坐标. (1)【解析】 令x=0,得到y=n, ∴A(0,n),且m>n>0 ∵y=x2+mx+n=(x-m)2+m2+n, ∴P(m,m2+n). 根据题意得,∠ABC=∠AOC=∠OCB=90°, ∴四边形ABCO是矩形. ∴BC=AO=B′C=n,AB=A′B′=OC=m. ∴A′点坐标为(m+n,m). (2)证明:连接EA′,AB′. ∵BC=B′C,∠BCB′=90°, ∴∠EB′O=45°. ∵∠EOB′=90°, ∴∠OEB′=45°, ∴OB′=OE=m+n. ∵AO=n, ∴EA=m,∵A′B′=m, ∴A′B′=EA(5分) ∵∠A′B′C=90°, ∴EA∥A′B′. ∴四边形AEA′B′是平行四边形. ∴对角线B′E与AA′互相平分. (3)【解析】 ∵点A′(m+n,m)在抛物线上, ∴m=-(m+n)2+(m+n)m+n. 整理得:m-n=(m+n)(m-n) ∵m>n,即m-n≠0. ∴m+n=3,即n=3-m. ∵AB•BC=1,即mn=1. 把n=3-m代入m•n=1 得,m(3-m)=1. 解得或(不合题意舍去) ∴抛物线解析式为y=-x2+x+1. ∴A'(3,2),A(0,1). 结论:在抛物线的对称轴上存在点D,使△AA′D为等腰三角形. 点D的坐标为:D1(2,1+),D2(2,1-),D3(2,5),D4(2,-1),D5(2,0).
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,一底角为60°的等腰梯形ABCD的下底AB在x轴的正半轴上,A为坐标原点,点B的坐标为(m,0),对角线BD平分∠ABC,一动点P在BD上以每秒一个单位长度的速度由B→D运动(点P不与B,D重合).过P作PE⊥BD交AB于点E,交线段BC(或CD)于点F.
(1)用含m的代数式表示线段AD的长是______
(2)当直线PE经过点C时,它的解析式为y=manfen5.com 满分网x-2manfen5.com 满分网,求m的值;
(3)在上述结论下,设动点P运动了t秒时,△AEF的面积为S,求S与t的函数关系式;并写出t为何值时,S取得最大值,最大值是多少?

manfen5.com 满分网 查看答案
已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(3)设PQ的长为x(cm),试确定y与x之间的关系式.

manfen5.com 满分网 查看答案
如图,抛物线y=x2+bx-c经过直线y=x-3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标.

manfen5.com 满分网 查看答案
如图,顶点为D的抛物线y=x2+bx-3与x轴相交于A、B两点,与y轴相交于点C,连接BC,已知tan∠ABC=1.
(1)求点B的坐标及抛物线y=x2+bx-3的解析式;
(2)在x轴上找一点P,使△CDP的周长最小,并求出点P的坐标;
(3)若点E(x,y)是抛物线上不同于A,B,C的任意一点,设以A,B,C,E为顶点的四边形的面积为S,求S与x之间的函数关系式.

manfen5.com 满分网 查看答案
已知抛物线y=x2+4x+m(m为常数)经过点(0,4)
(1)求m的值;
(2)将该抛物线先向右、再向下平移得到另一条抛物线.已知这条平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为l1)关于y轴对称;它所对应的函数的最小值为-8.
①试求平移后的抛物线所对应的函数关系式;
②试问在平移后的抛物线上是否存在着点P,使得以3为半径的⊙P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2被⊙P所截得的弦AB的长度;若不存在,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.