满分5 > 初中数学试题 >

如图1,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB边上...

如图1,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB边上的任意一点,过点D作DE∥BC,交AC于点E.设△ADE的高AF为x(0<x<6),以DE为折线将△ADE翻折,所得的△A'DE与梯形DBCE重叠部分的面积记为y(点A关于DE的对称点A'落在AH所在的直线上).
(1)分别求出当0<x≤3与3<x<6时,y与x的函数关系式;
(2)当x取何值时,y的值最大,最大值是多少?

manfen5.com 满分网
(1)①当0<x≤3时,A′在三角形ABC内部,重合部分为三角形DA′E,因此只需求三角形ADE的面积即可.本题可先通过相似三角形ADE和ABC高的相似比求出DE的长,进而求三角形ADE的面积,也可直接根据三角形面积比等于相似比的平方来求三角形ADE的面积. ②当3<x<6时,此时A′落在三角形ABC外部,重合部分的面积可用三角形A′DE的面积即三角形ADE的面积-三角形A′PQ的面积求得.求法同①. (2)根据(1)得出的函数的性质及自变量的取值范围可得出y的最大值及对应的x的值. 【解析】 (1)①当0<x≤3时,由折叠得到的△A'ED落在△ABC内部如图(1),重叠部分为△A'ED ∵DE∥BC ∴∠ADE=∠B,∠AED=∠C ∴△ADE∽△ABC(1分) ∴, ∴,即DE=x 又∵FA'=FA=x ∴y=DE•A′F=×x•x ∴y=x2(0<x≤3) ②当3<x<6时,由折叠得到的△A'ED有一部分落在△ABC外,如图(2),重叠部分为梯形EDPQ ∵FH=6-AF=6-x A'H=A'F-FH=x-(6-x)=2x-6 又∵DE∥PQ ∴△A′PQ∽△A′DE ∴ ∴,PQ=3(x-3) ∴y=(DE+PQ)×FH [x+3(x-3)]×(6-x) ∴y=-x2+18x-27(3<x<6); (2)当0<x≤3时,y的最大值:y1=x2=×32=; 当3<x<6时,由y=-x2+18x-27=-(x-4)2+9 可知:当x=4时,y的最大值:y2=9; ∵y1<y2, ∴当x=4时,y有最大值:y最大=9.
复制答案
考点分析:
相关试题推荐
已知等腰三角形ABC的两个顶点分别是A(0,1)、B(0,3),第三个顶点C在x轴的正半轴上.关于y轴对称的抛物线y=ax2+bx+c经过A、D(3,-2)、P三点,且点P关于直线AC的对称点在x轴上.
(1)求直线BC的解析式;
(2)求抛物线y=ax2+bx+c的解析式及点P的坐标;
(3)设M是y轴上的一个动点,求PM+CM的取值范围.

manfen5.com 满分网 查看答案
已知:矩形纸片ABCD中,AB=26厘米,BC=18.5厘米,点E在AD上,且AE=6厘米,点P是AB边上一动点.按如下操作:
步骤一,折叠纸片,使点P与点E重合,展开纸片得折痕MN(如图1所示);
步骤二,过点P作PT⊥AB,交MN所在的直线于点Q,连接QE(如图2所示)
(1)无论点P在AB边上任何位置,都有PQ______QE(填“>”、“=”、“<”号);
(2)如图3所示,将纸片ABCD放在直角坐标系中,按上述步骤一、二进行操作:
①当点P在A点时,PT与MN交于点Q1,Q1点的坐标是(____________);
②当PA=6厘米时,PT与MN交于点Q2,Q2点的坐标是(____________);
③当PA=12厘米时,在图3中画出MN,PT(不要求写画法),并求出MN与PT的交点Q3的坐标;
(3)点P在运动过程,PT与MN形成一系列的交点Q1,Q2,Q3,…观察、猜想:众多的交点形成的图象是什么并直接写出该图象的函数表达式.③③
manfen5.com 满分网manfen5.com 满分网
查看答案
如图,抛物线y=manfen5.com 满分网x2+manfen5.com 满分网mx+n(其中m,n为常数且m>n)与y轴正半轴交于A点,它的对称轴交x轴正半轴于C点,抛物线的顶点为P,Rt△ABC的直角顶点B在对称轴上,当它绕点C按顺时针方向旋转90°得到Rt△A′B′C.
(1)写出点A,P,A′的坐标(用含m,n的式子表示);
(2)若直线BB'交y轴于E点,求证:线段B′E与AA′互相平分;
(3)若点A′在抛物线上且Rt△ABC的面积为1时,请求出抛物线的解析式并判断在抛物线的对称轴上是否存在点D,使△AA′D为等腰三角形?若存在,请直接写出所有符合条件的D点坐标;若不存在,请说明理由.
manfen5.com 满分网
查看答案
如图,在平面直角坐标系中,一底角为60°的等腰梯形ABCD的下底AB在x轴的正半轴上,A为坐标原点,点B的坐标为(m,0),对角线BD平分∠ABC,一动点P在BD上以每秒一个单位长度的速度由B→D运动(点P不与B,D重合).过P作PE⊥BD交AB于点E,交线段BC(或CD)于点F.
(1)用含m的代数式表示线段AD的长是______
(2)当直线PE经过点C时,它的解析式为y=manfen5.com 满分网x-2manfen5.com 满分网,求m的值;
(3)在上述结论下,设动点P运动了t秒时,△AEF的面积为S,求S与t的函数关系式;并写出t为何值时,S取得最大值,最大值是多少?

manfen5.com 满分网 查看答案
已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(3)设PQ的长为x(cm),试确定y与x之间的关系式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.