满分5 > 初中数学试题 >

如图,二次函数y=ax2的图象与一次函数y=x+b的图象相交于A(-2,2)、B...

如图,二次函数y=ax2的图象与一次函数y=x+b的图象相交于A(-2,2)、B两点,从点A和点B分别引平行于y轴的直线与x轴分别交于C,D两点,点P(t,0),为线段CD上的动点,过点P且平行于y轴的直线与抛物线和直线分别交于R,S.
(1)求一次函数和二次函数的解析式,并求出点B的坐标;
(2)当SR=2RP时,计算线段SR的长;
(3)若线段BD上有一动点Q且其纵坐标为t+3,问是否存在t的值,使S△BRQ=15?若存在,求t的值;若不存在,说明理由.

manfen5.com 满分网
(1)将A点坐标分别代入抛物线和直线的解析式中即可求出两函数的解析式.然后联立两函数的函数式即可求出B点的坐标. (2)线段SR实际是直线AB的函数值和抛物线函数值的差.而RP的长实际是R点的纵坐标,根据SR=2RP可得出一个关于P点横坐标t的方程,据此可求出P点的横坐标t.然后代入SR的表达式即可求出SR的长. (3)可用t表示出BQ的长,再根据D,P的坐标用t表示出R到BD的距离,然后根据三角形的面积公式即可得出△BRQ的面积表达式,根据其面积为15可求出t的值. 【解析】 (1)由题意知点A(-2,2)在y=ax2的图象上,又在y=x+b的图象上 所以得2=a(-2)2和2=-2+b, ∴,b=4. ∴一次函数的解析式为y=x+4. 二次函数的解析式为y=x2. 由, 解得或, 所以B点的坐标为(4,8). (2)因过点P(t,0)且平行于y轴的直线为x=t, 得, 所以点S的坐标(t,t+4). 由得, 所以点R的坐标(t,t2). 所以SR=t+4-t2,RP=t2. 由SR=2RP得t+4-t2=2×t2, 解得或t=2. 因点P(t,0)为线段CD上的动点, 所以-2≤t≤4, 所以或t=2 当t=2时,SR=2+4-×22=4 所以线段SR的长为或4. (3)存在符合题意的t. 因BQ=8-(t+3)=5-t,点R到直线BD的距离为4-t, 所以S△BRQ=(5-t)(4-t)=15. 解得t=-1或t=10. 因为-2≤t≤4, 所以t=-1.
复制答案
考点分析:
相关试题推荐
如图,已知与x轴交于点A(1,0)和B(5,0)的抛物线的顶点为C(3,4),抛物线l2与l1关于x轴对称,顶点为C′.
(1)求抛物线l2的函数关系式;
(2)已知原点O,定点D(0,4),l2上的点P与l1上的点P′始终关于x轴对称,则当点P运动到何处时,以点D,O,P,P′为顶点的四边形是平行四边形;
(3)在l2上是否存在点M,使△ABM是以AB为斜边且一个角为30°的直角三角形?若存在,求出点M的坐标;若不存在,说明理由.
manfen5.com 满分网
查看答案
在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(-3,1).
(1)求点B的坐标;
(2)求过A,O,B三点的抛物线的解析式;
(3)设点B关于抛物线的对称轴l的对称点为B1,求△AB1B的面积.

manfen5.com 满分网 查看答案
如图,抛物线y=-x2+2nx+n2-9(n为常数)经过坐标原点和x轴上另一点C,顶点在第一象限.
(1)确定抛物线所对应的函数关系式,并写出顶点坐标;
(2)在四边形OABC内有一矩形MNPQ,点M,N分别在OA,BC上,A点坐标为(2,8)B点坐标为(4,8),点Q,P在x轴上.当MN为多少时,矩形MNPQ的面积最大,最大面积是多少?

manfen5.com 满分网 查看答案
如图,在直角坐标系中,O为原点,抛物线y=x2+bx+3与x轴的负半轴交于点A,与y轴的正半轴交于点B,tan∠ABO=manfen5.com 满分网,顶点为P.
(1)求抛物线的解析式;
(2)若抛物线向上或向下平移|k|个单位长度后经过点C(-5,6),试求k的值及平移后抛物线的最小值;
(3)设平移后的抛物线与y轴相交于D,顶点为Q,点M是平移的抛物线上的一个动点.请探究:当点M在何位置时,△MBD的面积是△MPQ面积的2倍求出此时点M的坐标.友情提示:抛物线y=ax2+bx+c(a≠0)的对称轴是manfen5.com 满分网,顶点坐标是manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,已知抛物线y=-x2+2x+3交轴于A,B两点(点A在点B的左侧),与y轴交于点C
(1)求点A、B、C的坐标;
(2)若点M为抛物线的顶点,连接BC、CM、BM,求△BCM的面积;
(3)连接AC,在轴上是否存在点P,使△ACP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.