满分5 > 初中数学试题 >

已知抛物线y=ax2+x+2. (1)当a=-1时,求此抛物线的顶点坐标和对称轴...

已知抛物线y=ax2+x+2.
(1)当a=-1时,求此抛物线的顶点坐标和对称轴;
(2)若代数式-x2+x+2的值为正整数,求x的值;
(3)当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线y=ax2+x+2与x轴的正半轴相交于点N(n,0).若点M在点N的左边,试比较a1与a2的大小.
(1)将a的值代入抛物线中,即可求出抛物线的解析式,用配方法或公式法可求出抛物线的顶点坐标和对称轴解析式. (2)可先得出y的值,然后解方程求解即可. (3)可将M、N的坐标分别代入抛物线中,得出a1、a2的表达式,然后令a1-a2进行判断即可. 【解析】 (1)当a=-1时,y=-x2+x+2=-(x-)2+ ∴抛物线的顶点坐标为:(,),对称轴为x=; (2)∵代数式-x2+x+2的值为正整数, -x2+x+2=-(x-)2+2≤2, ∴-x2+x+2=1,解得x=, 或-x2+x+2=2,解得x=0或1. ∴x的值为,,0,1; (3)将M代入抛物线的解析式中可得:a1m2+m+2=0; ∴a1=; 同理可得a2=-; a1-a2=, ∵m在n的左边, ∴m-n<0, ∵0<m<n, ∴a1-a2=<0, ∴a1<a2.
复制答案
考点分析:
相关试题推荐
已知抛物线y=ax2+bx+c经过P(manfen5.com 满分网,3),E(manfen5.com 满分网,0)及原点O(0,0).
(1)求抛物线的解析式;
(2)过P点作平行于x轴的直线PC交y轴于C点,在抛物线对称轴右侧且位于直线PC下方的抛物线上,任取一点Q,过点Q作直线QA平行于y轴交x轴于A点,交直线PC于B点,直线QA与直线PC及两坐标轴围成矩形OABC(如图).是否存在点Q,使得△OPC与△PQB相似?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)如果符合(2)中的Q点在x轴的上方,连接OQ,矩形OABC内的四个三角形△OPC,△PQB,△OQP,△OQA之间存在怎样的关系,为什么?

manfen5.com 满分网 查看答案
如图,二次函数y=ax2的图象与一次函数y=x+b的图象相交于A(-2,2)、B两点,从点A和点B分别引平行于y轴的直线与x轴分别交于C,D两点,点P(t,0),为线段CD上的动点,过点P且平行于y轴的直线与抛物线和直线分别交于R,S.
(1)求一次函数和二次函数的解析式,并求出点B的坐标;
(2)当SR=2RP时,计算线段SR的长;
(3)若线段BD上有一动点Q且其纵坐标为t+3,问是否存在t的值,使S△BRQ=15?若存在,求t的值;若不存在,说明理由.

manfen5.com 满分网 查看答案
如图,已知与x轴交于点A(1,0)和B(5,0)的抛物线的顶点为C(3,4),抛物线l2与l1关于x轴对称,顶点为C′.
(1)求抛物线l2的函数关系式;
(2)已知原点O,定点D(0,4),l2上的点P与l1上的点P′始终关于x轴对称,则当点P运动到何处时,以点D,O,P,P′为顶点的四边形是平行四边形;
(3)在l2上是否存在点M,使△ABM是以AB为斜边且一个角为30°的直角三角形?若存在,求出点M的坐标;若不存在,说明理由.
manfen5.com 满分网
查看答案
在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(-3,1).
(1)求点B的坐标;
(2)求过A,O,B三点的抛物线的解析式;
(3)设点B关于抛物线的对称轴l的对称点为B1,求△AB1B的面积.

manfen5.com 满分网 查看答案
如图,抛物线y=-x2+2nx+n2-9(n为常数)经过坐标原点和x轴上另一点C,顶点在第一象限.
(1)确定抛物线所对应的函数关系式,并写出顶点坐标;
(2)在四边形OABC内有一矩形MNPQ,点M,N分别在OA,BC上,A点坐标为(2,8)B点坐标为(4,8),点Q,P在x轴上.当MN为多少时,矩形MNPQ的面积最大,最大面积是多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.