在如图所示的直角坐标系中,四边形OABC是边长为2的正方形,D为x轴上一点,连接BD交y轴于E点,且tan∠CBE=
.抛物线y=ax
2+bx+c(a≠0)过A、C、D三点,顶点为F.
(1)求D点坐标;
(2)求抛物线的解析式及顶点F的坐标;
(3)在直线DB上是否存在点P,使四边形PFDO为梯形?若存在,求出其坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
已知:AC是⊙O的直径,点A、B、C、O在⊙O
1上,OA=2.建立如图所示的直角坐标系.∠ACO=∠ACB=60度.
(1)求点B关于x轴对称的点D的坐标;
(2)求经过三点A、B、O的二次函数的解析式;
(3)该抛物线上是否存在点P,使四边形PABO为梯形?若存在,请求出P点的坐标;若不存在,请说明理由.
查看答案
如图,已知二次函数y=
x
2+bx+c的图象与x轴只有一个公共点M,与y轴的交点为A,过点A的直线y=x+c与x轴交于点N,与这个二次函数的图象交于点B.
(1)求点A、B的坐标(用含b、c的式子表示);
(2)当S
△BMN=4S
△AMN时,求二次函数的解析式;
(3)在(2)的条件下,设点P为x轴上的一个动点,那么是否存在这样的点P,使得以P、A、M为顶点的三角形为等腰三角形?若存在,请写出符合条件的所有点P的坐标;若不存在,请说明理由.
查看答案
如图,已知二次函数y=-
x
2+4x+c的图象经过坐标原点,并且与函数y=
x的图象交于O、A两点.
(1)求c的值;
(2)求A点的坐标;
(3)若一条平行于y轴的直线与线段OA交于点F,与这个二次函数的图象交于点E,求线段EF的最大长度.
查看答案
已知抛物线y=ax
2+bx+c过点A(1,
),其顶点E的横坐标为2,此抛物线与x轴分别交于B(x
1,0),C(x
2,0)两点(x
1<x
2),且x
12+x
22=16.
(1)求此抛物线的解析式及顶点E的坐标;
(2)若D是y轴上一点,且△CDE为等腰三角形,求点D的坐标.
查看答案
如图(单位:m),等腰三角形ABC以2米/秒的速度沿直线L向正方形移动,直到AB与CD重合.设x秒时,三角形与正方形重叠部分的面积为ym
2.
(1)写出y与x的关系式;
(2)当x=2,3.5时,y分别是多少?
(3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?
查看答案