在平面直角坐标系中有一点A(
),过A点作x轴的平行线l,在l上有一不与A点重合的点B,连接OA,OB.将OA绕O点顺时针方向旋转α°到OA
1,OB绕O点逆时针方向旋转α°到OB
1.
(1)当B点在A点右侧时,如图(1).如果∠AOB=20°,∠A
1OB=110°,α=______.这时直线AB
1与直线A
1B有何特殊的位置关系证明你的结论.
(2)如果B点的横坐标为t,△OAB的面积为S,直接写出S关于t的函数关式,并指出t的取值范围.
(3)当α=60时,直线B
1A交y轴于D,求以D为顶点且经过A点的抛物线的解析式.
考点分析:
相关试题推荐
已知:如图,抛物线y=ax
2+bx+c的顶点C在以D(-2,-2)为圆心,4为半径的圆上,且经过⊙D与x轴的两个交点A、B,连接AC、BC、OC.
(1)求点C的坐标;
(2)求图中阴影部分的面积;
(3)在抛物线上是否存在点P,使DP所在直线平分线段OC?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案
如图,已知抛物线y=px
2-1与两坐标轴分别交于点A、B、C,点D坐标为(0,-2),△ABD为直角三角形,l为过点D且平行于x轴的一条直线.
(1)求p的值;
(2)若Q为抛物线上一动点,试判断以Q为圆心,QO为半径的圆与直线l的位置关系,并说明理由;
(3)是否存在过点D的直线,使该直线被抛物线所截得的线段是点D到直线与抛物线两交点间得两条线段的比例中项?如果存在,请求出直线解析式;如果不存在,请说明理由.
查看答案
如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒.
(1)P点的坐标为多少;(用含x的代数式表示)
(2)试求△MPA面积的最大值,并求此时x的值;
(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.
查看答案
如图,已知抛物线y=ax
2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.
查看答案
如图,△OAB是边长为2+
的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线y=-
x
2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;
(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.
查看答案