满分5 > 初中数学试题 >

在平面直角坐标系中,已知A(0,3),B(4,0),设P、Q分别是线段AB、OB...

在平面直角坐标系中,已知A(0,3),B(4,0),设P、Q分别是线段AB、OB上的动点,它们同时出发,点P以每秒3个单位的速度从点A向点B运动,点Q以每秒1个单位的速度从点B向点O运动.设运动时间为t(秒).
(1)用含t的代数式表示点P的坐标;
(2)当t为何值时,△OPQ为直角三角形?
(3)在什么条件下,以Rt△OPQ的三个顶点能确定一条对称轴平行于y轴的抛物线?选择一种情况,求出所确定的抛物线的解析式.

manfen5.com 满分网
(1)作PM⊥y轴,PN⊥x轴,那么PM就是P点的横坐标,PN就是P点的纵坐标.然后可通过相似三角形AMP和AOB求出MP的长,同理可通过相似三角形BPN和BAP求出PN的长,即可得出P点的坐标. (2)本题要分情况进行讨论: ①当∠POQ=90°时,P,A重合此时t=0; 当∠OPQ=90°时,可根据射影定理得出PN2=ON•NQ,由此可求出t的值. 当∠OPQ=90°时,Q,N重合,可用BQ的长表示出P点的横坐标,以此可求出t的值. (3)很显然当∠OPQ=90°时,可确定一条符合条件的抛物线,可根据(2)中得出的∠OPQ=90°时t的取值,确定出P,Q的坐标,然后用待定系数法即可求出这条抛物线的解析式. 【解析】 (1)作PM⊥y轴,PN⊥x轴. ∵OA=3,OB=4, ∴AB=5. ∵PM∥x轴, ∴, ∴, ∴PM=t. ∵PN∥y轴, ∴, ∴, ∴PN=3-t, ∴点P的坐标为(t,3-t). (2)①当∠POQ=90°时,t=0,△OPQ就是△OAB,为直角三角形. ②当∠OPQ=90°时,△OPN∽△PQN, ∴PN2=ON•NQ. (3-t)2=t(4-t-t). 化简,得19t2-34t+15=0, 解得t=1或t=. ③当∠OQP=90°时,N、Q重合. ∴4-t=t, ∴t=. 综上所述,当t=0,t=1,t=,t=时,△OPQ为直角三角形. (3)当t=1或t=时,即∠OPQ=90°时, 以Rt△OPQ的三个顶点可以确定一条对称轴平行于y轴的抛物线. 当t=1时,点P、Q、O三点的坐标分别为P(,),Q(3,0),O(0,0). 设抛物线的解析式为y=a(x-3)(x-0), 即y=a(x2-3x). 将P(,)代入上式, 得a=-. ∴y=-(x2-3x). 即y=-x2+x. 说明:若选择t=时,点P、Q、O三点的坐标分别是P(,),Q(,0),O(0,0). 求得抛物线的解析式为y=-x2+x.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系中有一点A(manfen5.com 满分网),过A点作x轴的平行线l,在l上有一不与A点重合的点B,连接OA,OB.将OA绕O点顺时针方向旋转α°到OA1,OB绕O点逆时针方向旋转α°到OB1
(1)当B点在A点右侧时,如图(1).如果∠AOB=20°,∠A1OB=110°,α=______.这时直线AB1与直线A1B有何特殊的位置关系证明你的结论.
(2)如果B点的横坐标为t,△OAB的面积为S,直接写出S关于t的函数关式,并指出t的取值范围.
(3)当α=60时,直线B1A交y轴于D,求以D为顶点且经过A点的抛物线的解析式.
manfen5.com 满分网
查看答案
已知:如图,抛物线y=ax2+bx+c的顶点C在以D(-2,-2)为圆心,4为半径的圆上,且经过⊙D与x轴的两个交点A、B,连接AC、BC、OC.
(1)求点C的坐标;
(2)求图中阴影部分的面积;
(3)在抛物线上是否存在点P,使DP所在直线平分线段OC?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知抛物线y=px2-1与两坐标轴分别交于点A、B、C,点D坐标为(0,-2),△ABD为直角三角形,l为过点D且平行于x轴的一条直线.
(1)求p的值;
(2)若Q为抛物线上一动点,试判断以Q为圆心,QO为半径的圆与直线l的位置关系,并说明理由;
(3)是否存在过点D的直线,使该直线被抛物线所截得的线段是点D到直线与抛物线两交点间得两条线段的比例中项?如果存在,请求出直线解析式;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒.
(1)P点的坐标为多少;(用含x的代数式表示)
(2)试求△MPA面积的最大值,并求此时x的值;
(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.

manfen5.com 满分网 查看答案
如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.