满分5 > 初中数学试题 >

图1至图7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长...

图1至图7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.
如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;…),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.
另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A⇒B⇒C⇒D⇒A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).
正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.
(1)请你在图2和图3中分别画出x为2秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;
(2)①如图4,当1≤x≤3.5时,求y与x的函数关系式;
②如图5,当3.5≤x≤7时,求y与x的函数关系式;
③如图6,当7≤x≤10.5时,求y与x的函数关系式;
④如图7,当10.5≤x≤13时,求y与x的函数关系式.
(3)对于正方形MNPQ在正方形ABCD各边上移动一周的过程,请你根据重叠部分面积y的变化情况,指出y取得最大值和最小值时,相对应的x的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)manfen5.com 满分网
(1)当x=2时,Q离AD的距离为6+2=8,而G离AD的距离为7-2=5,因此重合部分的长为3.同理可求得重合部分的宽为1,因此y=3. 当x=18时,正方形MNPQ走完AB需14秒,因此x=18时,正方形MNPQ在BC边上运动了4秒,而正方形EHFG扩张到最大需7秒再缩小到原来的大小需7秒,因此x=18时,正方形EHFG重复第二次运动,且第二次运动过程中运动了4秒,因此MN离AB的距离为6+4=10,OP离AB的距离为4,因此重合部分的长为6,同理可求得重合部分的宽为3,y=3×6=18. (2)①当1≤x≤3.5时,是正方形EHGF第一次向外扩张的过程,此时MK=x+6,SK=7-x,因此MS=2x-1.同理可求得SG的长,由此可得出重合部分的面积y与x的函数关系式. ②当3.5≤x≤7时,正方形EHGF第一次向内收缩,此时重合部分的长不变为MN的长即6,而EQ=x,NP=6,因此重合部分的宽为6-x,由此可得出y与x的函数关系式. ③当7≤x≤10.5时,正方形EHGF第二次向外扩张,此时重合部分的宽仍为MN的长即6,MQ=6,TQ=x-7,因此MT=13-x,由此可得出y与x的函数关系式. ④当10.5≤x≤13时,正方形EHGF第二次向内收缩,解法参照①. (3)根据②中x不同区间的y的函数关系式,可根据各函数的性质和自变量的取值范围求出y的最大或最小值. 【解析】 (1)相应的图形如图1,2. 当x=2时,y=3; 当x=18时,y=18. (2)①当1≤x≤3.5时,如图3, 延长MN交AD于K, 设MN与HG交于S,MQ与FG交于T,则MK=6+x,SK=TQ=7-x,从而MS=MK-SK=2x-1,MT=MQ-TQ=6-(7-x)=x-1. ∴y=MT•MS=(x-1)(2x-1)=2x2-3x+1. ②当3.5≤x≤7时,如图4, 设FG与MQ交于T,则 TQ=7-x, ∴MT=MQ-TQ=6-(7-x)=x-1. ∴y=MN•MT=6(x-1)=6x-6. ③当7≤x≤10.5时,如图5, 设FG与MQ交于T,则 TQ=x-7, ∴MT=MQ-TQ=6-(x-7)=13-x. ∴y=MN•MT=6(13-x)=78-6x. ④当10.5≤x≤13时,如图6, 设MN与EF交于S,NP交FG于R,延长NM交BC于K,则MK=14-x,SK=RP=x-7, ∴SM=SK-MK=2x-21,从而SN=MN-SM=27-2x,NR=NP-RP=13-x. ∴y=NR•SN=(13-x)(27-2x)=2x2-53x+351. (3)对于正方形MNPQ, ①在AB边上移动时,当0≤x≤1及13≤x≤14时,y取得最小值0; 当x=7时,y取得最大值36. ②在BC边上移动时,当14≤x≤15及27≤x≤28时,y取得最小值0; 当x=21时,y取得最大值36. ③在CD边上移动时,当28≤x≤29及41≤x≤42时,y取得最小值0; 当x=35时,y取得最大值36. ④在DA边上移动时,当42≤x≤43及55≤x≤56时,y取得最小值0; 当x=49时,y取得最大值36.
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).
(1)设四边形PCQD的面积为y,求y与t的函数关系式;
(2)t为何值时,四边形PQBA是梯形;
(3)是否存在时刻t,使得PD∥AB?若存在,求出t的值;若不存在,请说明理由;
(4)通过观察、画图或折纸等方法,猜想是否存在时刻t,使得PD⊥AB?若存在,请估计t的值在括号中的哪个时间段内(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,请简要说明理由.

manfen5.com 满分网 查看答案
二次函数y=manfen5.com 满分网x2的图象如图所示,过y轴上一点M(0,2)的直线与抛物线交于A,B两点,过点A,B分别作y轴的垂线,垂足分别为C,D.
(1)当点A的横坐标为-2时,求点B的坐标;
(2)在(1)的情况下,分别过点A,B作AE⊥x轴于E,BF⊥x轴于F,在EF上是否存在点P,使∠APB为直角?若存在,求点P的坐标;若不存在,请说明理由;
(3)当点A在抛物线上运动时(点A与点O不重合),求AC•BD的值.

manfen5.com 满分网 查看答案
如图,二次函数y=ax2的图象与一次函数y=x+b的图象相交于A(-2,2),B两点,从点A和点B分别引平行于y轴的直线与x轴分别交于C,D两点,点P(t,0),Q(4,t+3)分别为线段CD和BD上的动点,过点P且平行于y轴的直线与抛物线和直线分别交于R,S.
(1)求一次函数和二次函数的解析式,并求出点B的坐标;
(2)指出二次函数中,函数y随自变量x增大或减小的情况;
(3)当SR=2RP时,求t的值;
(4)当S△BRQ=15时,求t的值.

manfen5.com 满分网 查看答案
已知抛物线y=ax2+6x-8与直线y=-3x相交于点A(1,m).
(1)求抛物线的解析式;
(2)请问(1)中的抛物线经过怎样的平移就可以得到y=ax2的图象?
(3)设抛物线y=ax2上依次有点P1,P2,P3,P4,…,其中横坐标依次是2,4,6,8,…,纵坐标依次为n1,n2,n3,n4,…,试求n3-n1003的值.
查看答案
已知抛物线y=x2-4x+m与x轴相交于A,B两点(B点在A点的左边),与y轴的负半轴相交于点C.
(1)求抛物线的对称轴和顶点坐标(用数或含m的代数式表示);
(2)若AB=6,求抛物线的解析式;
(3)在(2)的抛物线上是否存在点P,使△AOP≌△COP?如果存在,请确定点P的位置,并求出点P的坐标;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.