满分5 > 初中数学试题 >

如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,...

如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).
(1)求点B的坐标;
(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;
(3)在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)在Rt△OAB中,由∠AOB=30°可以得到OB=,过点B作BD垂直于x轴,垂足为D,利用已知条件可以求出OD,BD,也就求出B的坐标; (2)根据待定系数法把A,B,O三点坐标代入函数解析式中就可以求出解析式; (3)设存在点C(x,x2+x),使四边形ABCO面积最大,而△OAB面积为定值,只要△OBC面积最大,四边形ABCO面积就最大.过点C作x轴的垂线CE,垂足为E,交OB于点F,则S△OBC=S△OCF+S△BCF=|CF|•|OE|+|CF|•|ED|=|CF|•|OD|=|CF|,而|CF|=yC-yF=x2+x-x=-x2+x,这样可以得到S△OBC=x2+x,利用二次函数就可以求出△OBC面积最大值,也可以求出C的坐标. 【解析】 (1)在Rt△OAB中, ∵∠AOB=30°, ∴OB=, 过点B作BD垂直于x轴,垂足为D,则OD=,BD=, ∴点B的坐标为().(1分) (2)将A(2,0)、B()、O(0,0)三点的坐标代入y=ax2+bx+c, 得(2分) 解方程组,有a=,b=,c=0.(3分) ∴所求二次函数解析式是y=x2+x.(4分) (3)设存在点C(x,x2+x)(其中0<x<),使四边形ABCO面积最大 ∵△OAB面积为定值, ∴只要△OBC面积最大,四边形ABCO面积就最大.(5分) 过点C作x轴的垂线CE,垂足为E,交OB于点F, 则S△OBC=S△OCF+S△BCF=|CF|•|OE|+|CF|•|ED|=|CF|•|OD|=|CF|,(6分) 而|CF|=yC-yF=x2+x-x=-x2+x, ∴S△OBC=x2+x.(7分) ∴当x=时,△OBC面积最大,最大面积为.(8分) 此时,点C坐标为(),四边形ABCO的面积为.(9分)
复制答案
考点分析:
相关试题推荐
已知:⊙P是边长为6的等边△ABC的外接圆,以过点A的直径所在直线为x轴,以BC所在直线为y轴建立平面直角坐标系,x轴与⊙P交于点D.
(1)求A,B,D三点坐标.
(2)求过A,B,D三点的抛物线的解析式.
(3)⊙P的切线交x轴正半轴于点M,交y轴正半轴于点N,切点为点E,且∠NMO=30°,试判断直线MN是否过抛物线的顶点?并说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,以点0′(-2,-3)为圆心,5为半径的圆交x轴于A、B两点,过点B作⊙O′的切线,交y轴于点C,过点0′作x轴的垂线MN,垂足为D,一条抛物线(对称轴与y轴平行)经过A、B两点,且顶点在直线BC上.
(1)求直线BC的解析式;
(2)求抛物线的解析式;
(3)设抛物线与y轴交于点P,在抛物线上是否存在一点Q,使四边形DBPQ为平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点.
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式;
(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A′求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.
查看答案
已知:抛物线y=-x2+mx+2m2(m>0)与x轴交于A、B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A、B不重合),D是OC的中点,连接BD并延长,交AC于点E.
(1)用含m的代数式表示点A、B的坐标;
(2)求manfen5.com 满分网的值;
(3)当C、A两点到y轴的距离相等,且S△CED=manfen5.com 满分网时,求抛物线和直线BE的解析式.

manfen5.com 满分网 查看答案
如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成长方形零件PQMN,使长方形PQMN的边QM在BC上,其余两个顶点P,N分别在AB,AC上.
(Ⅰ)求这个长方形零件PQMN面积S的最大值;
(Ⅱ)在这个长方形零件PQMN面积最大时,能否将余下的材料△APN,△BPQ,△NMC剪下再拼成(不计接缝用料及损耗)与长方形PQMN大小一样的长方形?若能,试给出一种拼法;若不能,试说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.