满分5 > 初中数学试题 >

已知抛物线y=x2+(2n-1)x+n2-1(n为常数). (1)当该抛物线经过...

已知抛物线y=x2+(2n-1)x+n2-1(n为常数).
(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;
(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标.如果不存在,请说明理由.
(1)将原点坐标代入抛物线的解析式中,即可求出n的值,然后根据抛物线顶点在第四象限将不合题意的n值舍去,即可得出所求的二次函数解析式; (2)①先根据抛物线的解析式求出抛物线与x轴另一交点E的坐标,根据抛物线和矩形的对称性可知:OB的长,就是OE与BC的差的一半,由此可求出OB的长,即B点的坐标,然后代入抛物线的解析式中即可求出B点纵坐标,也就得出了矩形AB边的长.进而可求出矩形的周长; ②思路同①可设出A点坐标(设横坐标,根据抛物线的解析式表示纵坐标),也就能表示出B点的坐标,即可得出OB的长,同①可得出BC的长,而AB的长就是A点纵坐标的绝对值,由此可得出一个关于矩形周长和A点纵坐标的函数关系式,根据函数的性质可得出矩形周长的最大值及对应的A的坐标. 【解析】 (1)由已知条件,得n2-1=0 解这个方程,得n1=1,n2=-1 当n=1时,得y=x2+x,此抛物线的顶点不在第四象限. 当n=-1时,得y=x2-3x,此抛物线的顶点在第四象限. ∴所求的函数关系为y=x2-3x; (2)由y=x2-3x, 令y=0,得x2-3x=0, 解得x1=0,x2=3 ∴抛物线与x轴的另一个交点为(3,0) ∴它的顶点为(,),对称轴为直线x=,其大致位置如图所示, ①∵BC=1,易知OB=×(3-1)=1. ∴B(1,0) ∴点A的横坐标x=1,又点A在抛物线y=x2-3x上, ∴点A的纵坐标y=12-3×1=-2. ∴AB=|y|=|-2|=2. ∴矩形ABCD的周长为:2(AB+BC)=2×(2+1)=6. ②∵点A在抛物线y=x2-3x上,故可设A点的坐标为(x,x2-3x), ∴B点的坐标为(x,0).(0<x<) ∴BC=3-2x,A在x轴下方, ∴x2-3x<0, ∴AB=|x2-3x|=3x-x2 ∴矩形ABCD的周长, C=2[(3x-x2)+(3-2x)]=-2(x-)2+, ∵a=-2<0,抛物线开口向下,二次函数有最大值, ∴当x=时,矩形ABCD的周长C最大值为. 此时点A的坐标为A(,).
复制答案
考点分析:
相关试题推荐
如图,已知二次函数y=ax2+2x+3的图象与x轴交于点A、点B(点B在X轴的正半轴上),与y轴交于点C,其顶点为D,直线DC的函数关系式为y=kx+3,又tan∠OBC=1,
(1)求a、k的值;
(2)探究:在该二次函数的图象上是否存在点P(点P与点B、C补重合),使得△PBC是以BC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请你说明理由.

manfen5.com 满分网 查看答案
如图是二次函数y=(x+2)2的图象,顶点为A,与y轴的交点为B.
(1)求经过A、B两点的直线的函数关系式;
(2)若⊙M的圆心为M(m,0),半径为r,过A向该圆作切线,切点为N.请求出所有能使△AMN与△ABO全等的m、r的值;
(3)请在第二象限中的抛物线上找一点C,使△ABC的面积与△ABO的面积相等.

manfen5.com 满分网 查看答案
如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.
(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;
(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD所得图形的面积为Scm2
①求S关于t的函数关系式;
②(附加题)求S的最大值.

manfen5.com 满分网 查看答案
如图,已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,与y轴交于点M,与x轴交于点A和B.
(1)y=mx2+nx+p的解析式为______,试猜想出与一般形式抛物线y=ax2+bx+c关于y轴对称的二次函数解析式为______
(2)A,B的中点是点C,则sin∠CMB=______
查看答案
OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.
(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B'点.求B'点的坐标;
(2)求折痕CM所在直线的解析式;
(3)作B'G∥AB交CM于点G,若抛物线y=manfen5.com 满分网x2+m过点G,求抛物线的解析式,并判断以原点O为圆心,OG为半径的圆与抛物线除交点G外,是否还有交点?若有,请直接写出交点的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.