满分5 > 初中数学试题 >

阅读理【解析】 如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在B...

阅读理【解析】
如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BP•PC=AB•CD,解答下列问题.
(1)模型探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:BP•PC=AB•CD;
(2)拓展应用:如图3,在四边形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于点O,以O为顶点,以BC所在直线为x轴,建立平面直角坐标系,点P为线段OC上一动点(不与端点O、C重合)
(i)当∠APD=60°时,求点P的坐标;
(ii)过点P作PE⊥PD,交y轴于点E,设PO=x,OE=y,求y与x的函数关系式,并写出自变量x的取值范围.manfen5.com 满分网
(1)本题要通过证△ABP和△PCD相似来解.已知∠B=∠APD=∠C,那么可得出它们的补角都相等,进而可求出∠BAP=∠DPC,∠BPA=∠PDC.由此可证得两三角形相似,即可得出所求的结论. (2)①当∠APD=60°,符合了(1)题的条件,因此(1)的结论在本题适用,可据此求出BP的长,然后在直角三角形ABO中求出OB的长,由此可得出P点的坐标. ②本题要通过相似三角形进行求解.过D作DM⊥BC于M,可分两种情况进行讨论: (一):当P在OM上时,PM=OM-OP=5-x,可证△OPE∽△MDP,从而得出y与x的函数关系式; (二):当P在CM上时,PM=OP-OM=x-5,同样可证△OPE∽△MDP,从而得出y与x的函数关系式. (1)证明:∵∠B=∠C=∠APD, ∴∠BAP+∠BPA=∠BPA+∠DPC=180°-∠B=180°-∠APD, ∴∠BAP=∠DPC, ∵∠B=∠C, ∴△ABP∽△PCD, ∴BP:CD=AB:PC, ∴BP•PC=AB•CD. (2)【解析】 ①∵∠B=∠C=∠APD=60°, 由(1)知,BP•PC=AB•CD. ∵AB=4,BC=10,CD=6, 设BP=x,则PC=BC-BP=10-x, ∴x(10-x)=4×6, 整理,得x2-10x+24=0, 解得x=4或6, 即BP=4或6. 在直角△AOP中,∠AOP=90°,∠B=60°, ∴BO=AB•cos60°=2, ∴OP=BP-BO=2或4. ∴点P的坐标为(2,0)或(4,0); ②过点D作DM⊥BC,则CM=3,DM=3, ∴OM=BC-BO-CM=10-2-3=5. 第一种情况:当点P在线段OM上, ∵∠POE=∠DMP=90°,∠OPE=∠MDP=90°-∠DPM, ∴△OPE∽△MDP, ∴OP:DM=OE:PM, ∴x:3=y:(5-x), ∴y=-x2+x(0<x≤5); 第二种情况:当点P在线段CM上, ∵∠POE=∠DMP=90°,∠OPE=∠MDP=90°-∠DPM, ∴△OPE∽△MDP, ∴OP:DM=OE:PM, ∴x:3=y:(x-5), ∴y=x2-x(5<x<8).
复制答案
考点分析:
相关试题推荐
如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点B,A(manfen5.com 满分网),且△AOB∽△BOC.
(1)求C点坐标、∠ABC的度数及二次函数y=ax2+bx+3的关系式;
(2)在线段AC上是否存在点M(m,0).使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,直线y=-3x-3分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△DOC,抛物线y=ax2+bx+c经过A、B、C三点.
(1)填空:A(____________)、B(____________)、C(____________);
(2)求抛物线的函数关系式;
(3)E为抛物线的顶点,在线段DE上是否存在点P,使得以C、D、P为顶点的三角形与△DOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案
如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.
(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中:
①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当y取最小值时,判断△PQC的形状,并说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系xOy中,O为原点,点A、C的坐标分别为(2,0)、(1,manfen5.com 满分网).将△AOC绕AC的中点旋转180°,点O落到点B的位置,抛物线y=ax2-2manfen5.com 满分网x经过点A,点D是该抛物线的顶点.
(1)求证:四边形ABCO是平行四边形;
(2)求a的值并说明点B在抛物线上;
(3)若点P是线段OA上一点,且∠APD=∠OAB,求点P的坐标;
(4)若点P是x轴上一点,以P、A、D为顶点作平行四边形,该平行四边形的另一顶点在y轴上,写出点P的坐标.

manfen5.com 满分网 查看答案
如图1,在平面直角坐标系中,抛物线manfen5.com 满分网与直线manfen5.com 满分网相交于A,B两点.
(1)求线段AB的长;
(2)若一个扇形的周长等于(1)中线段AB的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少;
(3)如图2,线段AB的垂直平分线分别交x轴、y轴于C,D两点,垂足为点M,分别求出OM,OC,OD的长,并验证等式manfen5.com 满分网是否成立;
(4)如图3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,设BC=a,AC=b,AB=c.CD=b,试说明:manfen5.com 满分网
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.