为保证交通安全,汽车驾驶员必须知道汽车刹车后的停止距离(开始刹车到车辆停止车辆行驶的距离)与汽车行驶速度(开始刹车时的速度)的关系,以便及时刹车.
下表是某款车在平坦道路上路况良好时刹车后的停止距离与汽车行驶速度的对应值表:
行驶速度(千米/时) | 40 | 60 | 80 | … |
停止距离(米) | 16 | 30 | 48 | … |
(1)设汽车刹车后的停止距离y(米)是关于汽车行驶速度x(千米/时)的函数,给出以下三个函数:①y=ax+b;②y=
(k≠0);③y=ax
2+bx,请选择恰当的函数来描述停止距离y(米)与汽车行驶速度x(千米/时)的关系,说明选择理由,并求出符合要求的函数的解析式;
(2)根据你所选择的函数解析式,若汽车刹车后的停止距离为70米,求汽车行驶速度.
考点分析:
相关试题推荐
“假日旅乐园”中一种新型水上滑梯如图,其中线段PA表示距离水面(x轴)高度为5m的平台(点P在y轴上).滑道AB可以看作反比例函数图象的一部分,滑道BCD可以看作是二次函数图象的一部分,两滑道的连接点B为抛物线BCD的顶点,且点B到水面的距离BE=2m,点B到y轴的距离是5m.当小明从上而下滑到点C时,与水面的距离CG=
m,与点B的水平距离CF=2m.
(1)求反比例函数的解析式及其自变量的取值范围.
(2)求二次函数的解析式及其自变量的取值范围.
(3)小明从点B滑水面上点D处时,试求他所滑过的水平距离d.
查看答案
已知反比例函数y=
的图象与二次函数y=ax
2+x-1的图象相交于点(2,2)
(1)求a和k的值;
(2)反比例函数的图象是否经过二次函数图象的顶点,为什么?
查看答案
已知,在同一直角坐标系中,反比例函数y=
与二次函数y=-x
2+2x+c的图象交于点A(-1,m).
(1)求m、c的值;
(2)求二次函数图象的对称轴和顶点坐标.
查看答案
有一个Rt△ABC,∠A=90°,∠B=60°,AB=1,将它放在直角坐标系中,使斜边BC在x轴上,直角顶点A在反比例函数y=
的图象上,求点C的坐标.
查看答案
在△ABC中,设BC=x,BC上的高为y,△ABC的面积等于4.
(1)写出y和x之间的函数关系式,并指出自变量x的取值范围;然后作出它的函数图象;
(2)当△ABC为等腰直角三角形时,求出图象上对应点D、E的坐标;
(3)求△DOE的面积.
查看答案