满分5 > 初中数学试题 >

如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10...

如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题:
(1)当t为何值时,PE∥AB;
(2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S△PEQ=manfen5.com 满分网S△BCD?若存在,求出此时t的值;若不存在,说明理由;
(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由.

manfen5.com 满分网
(1)若要PE∥AB,则应有,故用t表示DE和DP后,代入上式求得t的值; (2)过B作BM⊥CD,交CD于M,过P作PN⊥EF,交EF于N.由题意知,四边形CDEF是平行四边形,可证得△DEQ∽△BCD,得到,求得EQ的值,再由△PNQ∽△BMD,得到,求得PN的值,利用S△PEQ=EQ•PN得到y与t之间的函数关系式; (3)利用S△PEQ=S△BCD建立方程,求得t的值; (4)易得△PDE≌△FBP,故有S五边形PFCDE=S△PDE+S四边形PFCD=S△FBP+S四边形PFCD=S△BCD,即五边形的面积不变. 【解析】 (1)当PE∥AB时, ∴. 而DE=t,DP=10-t, ∴, ∴, ∴当(s),PE∥AB. (2)∵线段EF由DC出发沿DA方向匀速运动, ∴EF平行且等于CD, ∴四边形CDEF是平行四边形. ∴∠DEQ=∠C,∠DQE=∠BDC. ∵BC=BD=10, ∴△DEQ∽△BCD. ∴. . ∴. 过B作BM⊥CD,交CD于M,过P作PN⊥EF,交EF于N, ∵BC=BD,BM⊥CD,CD=4cm, ∴CM=CD=2cm, ∴cm, ∵EF∥CD, ∴∠BQF=∠BDC,∠BFG=∠BCD, 又∵BD=BC, ∴∠BDC=∠BCD, ∴∠BQF=∠BFG, ∵ED∥BC, ∴∠DEQ=∠QFB, 又∵∠EQD=∠BQF, ∴∠DEQ=∠DQE, ∴DE=DQ, ∴ED=DQ=BP=t, ∴PQ=10-2t. 又∵△PNQ∽△BMD, ∴. ∴. ∴. ∴S△PEQ=EQ•PN=××. (3)S△BCD=CD•BM=×4×4=8, 若S△PEQ=S△BCD, 则有-t2+t=×8, 解得t1=1,t2=4. (4)在△PDE和△FBP中, ∵DE=BP=t,PD=BF=10-t,∠PDE=∠FBP, ∴△PDE≌△FBP(SAS). ∴S五边形PFCDE=S△PDE+S四边形PFCD=S△FBP+S四边形PFCD=S△BCD=8. ∴在运动过程中,五边形PFCDE的面积不变.
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,AB=AC,点D在BC上,DE∥AC,交AB与点E,点F在AC上,DC=DF,若BC=3,EB=4,CD=x,CF=y,求y与x的函数关系式,并写出自变量x的取值范围.

manfen5.com 满分网 查看答案
填表并解答下列问题:
x …-1 0 1 2 …
y1=2x+3 …
y2=x2 …
(1)在同一坐标系中画出两个函数的图象;
(2)当x从1开始增大时,预测哪一个函数的值先到达16;
(3)请你编出一个二次项系数是1的二次函数,使得当x=4时,函数值为16.编出的函数是y3=______
查看答案
在边长为6 cm的正方形中间剪去一个边长为x cm(x<6)的小正方形,剩下的四方框形的面积为y,y与x之间的函数关系是    查看答案
如图,一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表.那么s与t之间的函数关系式是s=   
 时间t/s 1 2
 距离s/m 2 8 18 32

manfen5.com 满分网 查看答案
当m=    时,函数y=(m-1)manfen5.com 满分网是关于x的二次函数. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.