满分5 > 初中数学试题 >

已知抛物线y=ax2+bx经过点A(-3,-3)和点P(t,0),且t≠0. (...

已知抛物线y=ax2+bx经过点A(-3,-3)和点P(t,0),且t≠0.
(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;
(2)若t=-4,求a、b的值,并指出此时抛物线的开口方向;
(3)直接写出使该抛物线开口向下的t的一个值.

manfen5.com 满分网
(1)由图可以看出A点为抛物线的顶点,且开口向上,所以此点即为此函数的最小值; (2)点p是抛物线与x轴的一个交点,而此时另一个交点是0,那么P与O是关于抛物线对称轴的两个对称点,知道了对称点的坐标,就很容易求出t的值; (3)a>0时,抛物线的开口向上,a<0时,抛物线的开口向下,求出a的值就知道其开口方向. 【解析】 (1)∵抛物线的对称轴经过点A, ∴A点为抛物线的顶点, ∴y的最小值为-3, ∵P点和O点对称, ∴t=-6; (2)分别将(-4,0)和(-3,-3)代入y=ax2+bx,得:, 解得, ∴抛物线开口方向向上; (3)将A(-3,-3)和点P(t,0)代入y=ax2+bx, , 由①得,b=3a+1③, 把③代入②,得at2+t(3a+1)=0, ∵t≠0,∴at+3a+1=0, ∴a=-. ∵抛物线开口向下,∴a<0, ∴-<0, ∴t+3>0, ∴t>-3. 故t的值可以是-1(答案不唯一). (注:写出t>-3且t≠0或其中任意一个数均给分)
复制答案
考点分析:
相关试题推荐
抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点.
(1)求出m的值并画出这条抛物线;
(2)求它与x轴的交点和抛物线顶点的坐标;
(3)x取什么值时,抛物线在x轴上方?
(4)x取什么值时,y的值随x值的增大而减小?

manfen5.com 满分网 查看答案
二次函数y=x2-4x+5的最小值为    查看答案
二次函数y=(x-1)2+4的最小值是    查看答案
已知二次函数y=(x-1)2+(x-3)2,当x=    时,函数达到最小值. 查看答案
函数y=9-4x2,当x=    时有最大值    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.