满分5 > 初中数学试题 >

二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题: (...

二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根;
(2)写出不等式ax2+bx+c>0的解集;
(3)写出y随x的增大而减小的自变量x的取值范围;
(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.

manfen5.com 满分网
(1)看二次函数与x轴交点的横坐标即可; (2)看x轴上方的二次函数的图象相对应的x的范围即可; (3)在对称轴的右侧即为y随x的增大而减小; (4)得到相对应的函数看是怎么平移得到的即可. 【解析】 (1)已知抛物线y=ax2+bx+c(a≠0),可得x1=1,x2=3;(2分) (2)依题意因为ax2+bx+c>0,得出x的取值范围为1<x<3;(2分) (3)如图可知,当y随x的增大而减小,自变量x的取值范围为x>2;(2分) (4)由顶点(2,2)设方程为a(x-2)2+2=0, ∵二次函数与x轴的2个交点为(1,0),(3,0), 代入a(x-2)2+2=0得:a(1-2)2+2=0, ∴a=-2, ∴抛物线方程为y=-2(x-2)2+2, y=-2(x-2)2+2-k实际上是原抛物线下移或上移|k|个单位.由图象知,当2-k>0时,抛物线与x轴有两个交点. 故k<2.(4分)
复制答案
考点分析:
相关试题推荐
已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m.

manfen5.com 满分网 查看答案
(1)用配方法把二次函数y=x2-4x+3变成y=(x-h)2+k的形成.
(2)在直角坐标系中画出y=x2-4x+3的图象.
(3)若A(x1,y1),B(x2,y2)是函数y=x2-4x+3图象上的两点,且x1<x2<1,请比较y1,y2的大小关系.(直接写结果)
(4)把方程x2-4x+3=2的根在函数y=x2-4x+3的图象上表示出来.
查看答案
已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)
①求该函数的关系式;
②求该函数图象与坐标轴的交点坐标;
③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.
查看答案
下表给出了代数式x2+bx+c与x的一些对应值:
     x … 0 1 2
 x2+bx+c … 3 -1  3
(1)请在表内的空格中填入适当的数;
(2)设y=x2+bx+c,则当x取何值时,y>0;
(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?
查看答案
已知抛物线y=manfen5.com 满分网x2+x-manfen5.com 满分网
(1)用配方法求出它的顶点坐标和对称轴;
(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.