小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你按有关内容补充完整:
复习日记卡片 |
内容:一元二次方程解法归纳 时间:2007年6月×日 |
举例:求一元二次方程x2-x-1=0的两个解 |
方法一:选择合适的一种方法(公式法、配方法、分解因式法)求解 解方程:x2-x-1=0. 【解析】
|
方法二:利用二次函数图象与坐标轴的交点求解如图所示,把方程x2-x-1=0的解看成是二次函数y=______的图象与x轴交点的横坐标,即x1,x2就是方程的解.
|
方法三:利用两个函数图象的交点求解 (1)把方程x2-x-1=0的解看成是一个二次函数y=______的图象与一个一次函数y=______图象交点的横坐标; (2)画出这两个函数的图象,用x1,x2在x轴上标出方程的解.
|
考点分析:
相关试题推荐
利用图象解一元二次方程x
2+x-3=0时,我们采用的一种方法是:在平面直角坐标系中画出抛物线y=x
2和直线y=-x+3,两图象交点的横坐标就是该方程的解.
(1)填空:利用图象解一元二次方程x
2+x-3=0,也可以这样求【解析】
在平面直角坐标系中画出抛物线y=______和直线y=-x,其交点的横坐标就是该方程的解.
(2)已知函数y=-
的图象(如图所示),利用图象求方程
-x+3=0的近似解.(结果保留两个有效数字)
查看答案
已知二次函数y=x
2+bx+c的图象与x轴的两个交点的横坐标分别为x
1、x
2,一元二次方程x
2+b
2x+20=0的两实根为x
3、x
4,且x
2-x
3=x
1-x
4=3,求二次函数的解析式,并写出顶点坐标.
查看答案
一元二次方程x
2+2x-3=0的二根x
1,x
2(x
1<x
2)是抛物线y=ax
2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)用配方法求此抛物线的顶点为P;
(3)当x取什么值时,y随x增大而减小?
查看答案
已知:二次函数y=x
2-mx-4.
(1)求证:该函数的图象一定与x轴有两个不同的交点;
(2)设该函数的图象与x轴的交点坐标为(x
1,0)、(x
2,0),且
,求m的值,并求出该函数图象的顶点坐标.
查看答案
已知:二次函数y=x
2-2(m-1)x+m
2-2m-3,其中m为实数.
(1)求证:不论m取何实数,这个二次函数的图象与x轴必有两个交点;
(2)设这个二次函数的图象与x轴交于点A(x
1,0)、B(x
2,0),且x
1、x
2的倒数和为
,求这个二次函数的解析式.
查看答案