满分5 > 初中数学试题 >

工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件...

工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.
(1)该工艺品每件的进价、标价分别是多少元?
(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?
(1)根据“每件获利45元”可得出:每件标价-每件进价=45元;根据“标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等”可得出等量关系:每件标价的八五折×8-每件进价×8=(每件标价-35元)×12-每件进价×12. (2)可根据题意列出关于总利润和每天利润的二次函数,以此求出问题. 【解析】 (1)设该工艺品每件的进价是x元,标价是y元. 依题意得方程组: 解得:. 故该工艺品每件的进价是155元,标价是200元. (2)设每件应降价a元出售,每天获得的利润为W元. 依题意可得W与a的函数关系式:W=(45-a)(100+4a), W=-4a2+80a+4500, 配方得:W=-4(a-10)2+4900, 当a=10时,W最大=4900. 故每件应降价10元出售,每天获得的利润最大,最大利润是4900元.
复制答案
考点分析:
相关试题推荐
某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,则所获利润yA(万元)与投资金额x(万元)之间存在正比例函数关系:yA=kx,并且当投资5万元时,可获利润2万元;
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元.
(1)请分别求出上述的正比例函数表达式与二次函数表达式;
(2)如果企业同时对A、B两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
查看答案
司机在驾驶汽车时,发现紧急情况到踩下刹车需要一段时间,这段时间叫反应时间.之后还会继续行驶一段距离.我们把司机从发现紧急情况到汽车停止所行驶的这段距离叫“刹车距离”(如图).
已知汽车的刹车距离s(单位:m)与车速v(单位:m/s)之同有如下关系:s=tv+kv2其中t为司机的反应时间(单位:s),k为制动系数.某机构为测试司机饮酒后刹车距离的变化,对某种型号的汽车进行了“醉汉”驾车测试,已知该型号汽车的制动系数k=0.08,并测得志愿者在未饮酒时的反应时间t=0.7s
(1)若志愿者未饮酒,且车速为11m/s,则该汽车的刹车距离为多少m(精确到0.1m);
(2)当志愿者在喝下一瓶啤酒半小时后,以17m/s的速度驾车行驶,测得刹车距离为46m.假如该志愿者当初是以11m/s的车速行驶,则刹车距离将比未饮酒时增加多少?(精确到0.1m)
(3)假如你以后驾驶该型号的汽车以11m/s至17m/s的速度行驶,且与前方车辆的车距保持在40m至50m之间.若发现前方车辆突然停止,为防止“追尾”.则你的反应时间应不超过多少秒?(精确到0.01s)

manfen5.com 满分网 查看答案
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
查看答案
某小区有一长100m,宽80m的空地,现将其建成花园广场,设计图案如下,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m,不大于60m.预计活动区每平方米造价60元,绿化区每平方米造价50元.设每块绿化区的长边为x m,短边为y m,工程总造价为w元.
(1)写出x的取值范围;
(2)写出y与x的函数关系式;
(3)写出w与x的函数关系式;
(4)如果小区投资46.9万元,问能否完成工程任务?若能,请写出x为整数的所有工程方案;若不能,请说明理由.(参考数据:manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.
(1)求出y关于x的函数关系式,并写出自变量x的取值范围;
(2)求出△BDE的面积S与x之间的函数关系式;
(3)当x为何值时,△BDE的面积S有最大值,最大值为多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.