满分5 > 初中数学试题 >

某公司试销一种成本为30元/件的新产品,按规定试销时的销售单价不低于成本单价,又...

某公司试销一种成本为30元/件的新产品,按规定试销时的销售单价不低于成本单价,又不高于80元/件,试销中每天的销售量y(件)与销售单价x(元/件)满足下表中的函数关系.
x(元/件)3540455055
y(件)550500450400350
(1)试求y与x之间的函数表达式;
(2)设公司试销该产品每天获得的毛利润为S(元),求S与x之间的函数表达式(毛利润=销售总价-成本总价);
(3)当销售单价定为多少时,该公司试销这种产品每天获得的毛利润最大?最大毛利润是多少?此时每天的销售量是多少?
(1)方法一,根据图中表格可知:每天的销售单价x增加5元,销售量y减少50件,故每天的销售量y和销售单价x之间为一次函数的关系,故可用待定系数法将y与x之间的函数表达式求出;方法二,设y与x之间满足二次函数表达式,将表格中任意三个值代入,可将该函数求出; (2)方法一,根据:毛利润=(每件产品的销售价-成本)×销售量,可求出S与x之间的函数表达式;方法二,根据:毛利润=销售总价-成本总价,也可求出S与x之间的函数表达式; (3)由(2)知,当x=-时,二次函数能取得极值. 【解析】 (1)解法1:设y与x之间的函数关系满足y=kx+b 把x=40,y=500;x=50,y=400 分别代入上式得: , 解得 ∴y=-10x+900 ∵表中其它对应值都满足y=-10x+900 ∴y与x之间的函数关系为一次函数,且函数表达式为y=-10x+900(30≤x≤80); 解法2:设y与x之间的函数关系满足y=ax2+bx+c 把x=35,y=550;x=40,y=500;x=50,y=400分别代入上式 得 解,得∴y=-10x+900 ∵表中其它对应值都满足y=-10x+900 ∴y与x之间的函数关系为一次函数,且函数表达式为y=-10x+900(30≤x≤80); (2)方法1:毛利润S=(x-30)•y =(x-30)(-10x+900) =-10x2+1200x-27000(30≤x≤80) 方法2:毛利润S=xy-30y =x•(-10x+900)-30×(-10x+900) =-10x2+1200x-27000(30≤x≤80); (3)在S=-10x2+1200x-27000中 ∵a=-10<0,∴当时 ∴S最大=-10×602+1200×60-27000=9000(元) 此时每天的销售量为:y=-10×60+900=300(件). ∴当销售单价定为60元/件时,该公司试销这种产品每天获得的毛利润最大,最大毛利润是9000元,此时每天的销售量是300件.
复制答案
考点分析:
相关试题推荐
某水果经销商上月份销售一种新上市的水果,平均售价为10元/千克,月销售量为1000千克.经市场调查,若将该种水果价格调低至x元/千克,则本月份销售量y(千克)与x(元/千克)之间满足一次函数关系y=kx+b.且当x=7时,y=2000;x=5时,y=4000.
(1)求y与x之间的函数关系式;
(2)已知该种水果上月份的成本价为5元/千克,本月份的成本价为4元/千克,要使本月份销售该种水果所获利润比上月份增加20%,同时又要让顾客得到实惠,那么该种水果价格每千克应调低至多少元?[利润=售价-成本价].
查看答案
通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y越大表示注意力越集中).当0≤x≤10时,图象是抛物线的一部分,当10≤x≤20和20≤x≤40时,图象是线段.
(1)当0≤x≤10时,求注意力指标数y与时间x的函数关系式;
(2)一道数学综合题,需要讲解24分钟.问老师能否经过适当安排,使学生听这道题时,注意力的指标数都不低于36?

manfen5.com 满分网 查看答案
南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x万元,每辆汽车的销售利润为y万元.(销售利润=销售价-进货价)
(1)求y与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;
(2)假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;
(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大,最大利润是多少?

manfen5.com 满分网 查看答案
王师傅有两块板材边角料,其中一块是边长为60cm的正方形板子;另一块是上底为30cm,下底为120cm,高为60cm的直角梯形板子(如图①).王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCFE围成的区域(如图②).由于受材料纹理的限制,要求裁出的矩形要以点B为一个顶点.
(1)求FC的长;
(2)利用图②求出矩形顶点B所对的顶点到BC边的距离x(cm)为多少时,矩形的面积y(cm2)最大?最大面积是多少?
(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.manfen5.com 满分网
查看答案
工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.
(1)该工艺品每件的进价、标价分别是多少元?
(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.