某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20m和11m的矩形大厅内修建一个60m
2的矩形健身房ABCD.该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/m
2,新建(含装修)墙壁的费用为80元/m
2.设健身房的高为3m,一面旧墙壁AB的长为xm,修建健身房墙壁的总投入为y元.
(1)求y与x的函数关系式;
(2)为了合理利用大厅,要求自变量x必须满足条件:8≤x≤12,当投入的资金为4800元时,问利用旧墙壁的总长度为多少?
考点分析:
相关试题推荐
如图,一单杆高2.2m,两立柱之间的距离为1.6m,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.
(1)一身高0.7m的小孩站在离立柱0.4m处,其头部刚好触上绳子,求绳子最低点到地面的距离;
(2)为供孩子们打秋千,把绳子剪断后,中间系上一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳子正好各为2米,木板与地面平行,求这时木板到地面的距离.(供选用数据:
≈1.8,
≈1.9,
≈2.1)
查看答案
有一种葡萄:从树上摘下后不保鲜最多只能存放一周,如果放在冷藏室,可以延长保鲜时间,但每天仍有一定数量的葡萄变质,假设保鲜期内的重量基本保持不变,现有一位个体户,按市场价收购了这种葡萄200千克放在冷藏室内,此时市场价为每千克2元,据测算,此后每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有1千克葡萄变质丢弃.
(1)设x天后每千克鲜葡萄的市场价为P元,写出P关于x的函数关系式;
(2)若存放x天后将鲜葡萄一次性出售,设鲜葡萄的销售金额为y元,写出y关于x的函数关系式;
(3)问个体户将这批葡萄存放多少天后出售,可获得最大利润,最大利润q是多少?
查看答案
某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系.观察图象,你能得到关于这种蔬菜销售情况的哪些信息?
答题要求:(1)请提供四条信息;
(2)不必求函数的解析式.
查看答案
某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同,他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:
(1)第一天中,在什么时间范围内这头骆驼的体温是上升的,它的体温从最低上升到最高需要多少时间?
(2)第三天12时这头骆驼的体温是多少?
(3)兴趣小组又在研究中发现,图中10时到22时的曲线是抛物线,求该抛物线的解析式.
查看答案
为了顺应市场要求,无为县花炮厂技术部研制开发一种新产品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该厂年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:
(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末花炮厂累积利润可达到30万元;
(3)求第8个月公司所获利润是多少万元?
查看答案