如图这是某次运动会开幕式上点燃火炬时在平面直角坐标系中的示意图,在地面有O、A两个观测点,分别测得目标点火炬C的仰视角为α、β,OA=2米,tanα=
,tanβ=
,位于点O正上方2米处的D点发射装置,可以向目标C发射一个火球点燃火炬,该火球运行的轨迹为一抛物线,当火球运行到距地面最大高度20米时,相应的水平距离为12米(图中E点).
(1)求火球运行轨迹的抛物线对应的函数解析式;
(2)说明按(1)中轨迹运行的火球能否点燃目标C.
考点分析:
相关试题推荐
心理学家研究发现,一般情况下,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力y随时间t(分钟)的变化规律有如下关系式:y=
(y值越大表示接受能力越强)
(1)讲课开始后第5分钟时与讲课开始后第25分钟时比较,何时学生的注意力更集中;
(2)讲课开始后多少分钟,学生的注意力最集中能持续多少分钟;
(3)一道数学难题,需要讲解24分钟,为了效果较好,要求学生的注意力最低达到180,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?
查看答案
某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.
(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?
(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?
(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?
查看答案
如图,矩形的长是4cm,宽是3cm,如果将长和宽都增加xcm,那么面积增加ycm
2.
(1)求y与x的函数表达式;
(2)求当边长增加多少时,面积增加8cm
2.
查看答案
某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万.该生产线投产后,从第1年到第x年的维修、保养费用累计为y(万元),且y=ax
2+bx,若第1年的维修、保养费用为2万元,第2年为4万元.
(1)求y的解析式;
(2)投产后,这个企业在第几年就能收回投资?
查看答案
某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价(x)定为多少元时,才能使每天所赚的利润(y)最大并求出最大利润.
查看答案