如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.
(1)求点A的坐标(用m表示);
(2)求抛物线的解析式;
(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.
考点分析:
相关试题推荐
如图,抛物线y=
x
2+3与x轴交于点A,点B,与直线y=
x+b相交于点B,点C,直线y=
x+b与y轴交于点E.
(1)写出直线BC的解析式.
(2)求△ABC的面积.
(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A,B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动.设运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?
查看答案
已知二次函数y=ax
2+bx+c(a≠0)的图象经过点A(1,0),B(2,0),C(0,-2),直线x=m(m>2)与x轴交于点D.
(1)求二次函数的解析式;
(2)在直线x=m(m>2)上有一点E(点E在第四象限),使得E、D、B为顶点的三角形与以A、O、C为顶点的三角形相似,求E点坐标(用含m的代数式表示);
(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由.
查看答案
如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=3.
(1)在AB边上取一点D,将纸片沿OD翻折,使点A落在BC边上的点E处,求点D,E的坐标;
(2)若过点D,E的抛物线与x轴相交于点F(-5,0),求抛物线的解析式和对称轴方程;
(3)若(2)中的抛物线与y轴交于点H,在抛物线上是否存在点P,使△PFH的内心在坐标轴上?若存在,求出点P的坐标,若不存在,请说明理由.
(4)若(2)中的抛物线与y轴相交于点H,点Q在线段OD上移动,作直线HQ,当点Q移动到什么位置时,O,D两点到直线HQ的距离之和最大?请直接写出此时点Q的坐标及直线HQ的解析式.
查看答案
如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).
(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);
(2)求出过A,B,C三点的抛物线的表达式;
(3)截取CE=OF=AD=m,且E,F,D分别在线段CO,OA,AB上,求四边形BEFD的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;
(4)在(3)的情况下,四边形BEFD是否存在邻边相等的情况?若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.
查看答案
如图,抛物线与x轴交于A(x
1,0),B(x
2,0)两点,且x
1>x
2,与y轴交于点C(0,4),其中x
1,x
2是方程x
2-2x-8=0的两个根.
(1)求这条抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;
(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
查看答案