满分5 > 初中数学试题 >

如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别...

如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.
(1)求抛物线的解析式;
(2)抛物线的对称轴交x轴于点E,连接DE,并延长DE交圆O于F,求EF的长;
(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由.

manfen5.com 满分网
(1)根据图形,易得点A、B、C、D的坐标;进而可得抛物线上三点D、M、N的坐标,将其代入解析式,求可得解析式; (2)有(1)的解析式,可得顶点坐标,即OE、DE的长,易得△BFD∽△EOD,再由EF=FD-DE的关系代入数值可得答案;(3)首先根据CD的坐标求出CD的直线方程,在根据切线的性质,可求得P的坐标,进而可得P是否在抛物线上. 【解析】 (1)∵圆心O在坐标原点,圆O的半径为1 ∴点A、B、C、D的坐标分别为A(-1,0)、B(0,-1)、C(1,0)、D(0,1) ∵抛物线与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C ∴M(-1,-1)、N(1,1) ∵点D、M、N在抛物线上,将D(0,1)、M(-1,-1)、N(1,1)的坐标代入y=ax2+bx+c, 得: 解之,得: ∴抛物线的解析式为y=-x2+x+1. (2)∵y=-x2+x+1=-(x-)2+ ∴抛物线的对称轴为 ∴OE=,DE= 连接BF,则∠BFD=90° ∴△BFD∽△EOD ∴ 又DE=,OD=1,DB=2 ∴FD= ∴EF=FD-DE=. (3)点P在抛物线上. 设过D、C点的直线为y=kx+b 将点C(1,0)、D(0,1)的坐标代入y=kx+b,得 k=-1,b=1 ∴直线DC为y=-x+1 过点B作圆O的切线BP与x轴平行,P点的纵坐标为y=-1 将y=-1代入y=-x+1,得x=2 ∴P点的坐标为(2,-1) 当x=2时,y=-x2+x+1=-22+2+1=-1 所以,P点在抛物线y=-x2+x+1上.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,点A(manfen5.com 满分网,0),B(3manfen5.com 满分网,2),C(0,2).动点D以每秒1个单位的速度从点O出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连接DA、DF.设运动时间为t秒.
(1)求∠ABC的度数;
(2)当t为何值时,AB∥DF;
(3)设四边形AEFD的面积为S.①求S关于t的函数关系式;
②若一抛物线y=-x2+mx经过动点E,当S<2manfen5.com 满分网时,求m的取值范围(写出答案即可).

manfen5.com 满分网 查看答案
如图,抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;
(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.

manfen5.com 满分网 查看答案
如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.
(1)求抛物线对应的函数表达式;
(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;
(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立(请直接写出结论).

manfen5.com 满分网 查看答案
阅读材料:
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:
S△ABC=manfen5.com 满分网ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(3)是否存在一点P,使S△PAB=manfen5.com 满分网S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网 manfen5.com 满分网 查看答案
如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;
(3)连接OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.