满分5 > 初中数学试题 >

正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时...

正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.
(1)证明:Rt△ABM∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;
(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.

manfen5.com 满分网
(1)要证三角形ABM和MCN相似,就需找出两组对应相等的角,已知了这两个三角形中一组对应角为直角,而∠BAM和∠NMC都是∠AMB的余角,因此这两个角也相等,据此可得出两三角形相似. (2)根据(1)的相似三角形,可得出AB,BM,MC,NC的比例关系式,已知了AB=4,BM=x,可用BC和BM的长表示出CM,然后根据比例关系式求出CN的表达式.这样直角梯形的上下底和高都已得出,可根据梯形的面积公式得出关于y,x的函数关系式.然后可根据函数的性质得出y的最大值即四边形ABCN的面积的最大值,以及此时对应的x的值,也就可得出BM的长. (3)已知了这两个三角形中相等的对应角是∠ABM和∠AMN,如果要想使Rt△ABM∽Rt△AMN,那么两组直角边就应该对应成比例,即,根据(1)的相似三角形可得出,因此BM=MC,M是BC的中点.即x=2. (1)证明:在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°, ∵AM⊥MN, ∴∠AMN=90°, ∴∠CMN+∠AMB=90°. 在Rt△ABM中,∠MAB+∠AMB=90°, ∴∠CMN=∠MAB, ∴Rt△ABM∽Rt△MCN. (2)【解析】 ∵Rt△ABM∽Rt△MCN, ∴,即, ∴, ∴y=S梯形ABCN=(+4)•4 =-x2+2x+8 =-(x-2)2+10, 当x=2时,y取最大值,最大值为10. (3)【解析】 ∵∠B=∠AMN=90°, ∴要使△ABM∽△AMN,必须有, 由(1)知, ∴=, ∴BM=MC, ∴当点M运动到BC的中点时,△ABM∽△AMN,此时x=2.
复制答案
考点分析:
相关试题推荐
如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
(注意:本题中的结果均保留根号).

manfen5.com 满分网 查看答案
如图,已知直线y=-manfen5.com 满分网x+1交坐标轴于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线另一个交点为E.
(1)请直接写出点C,D的坐标;
(2)求抛物线的解析式;
(3)若正方形以每秒manfen5.com 满分网个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;
(4)在(3)的条件下,抛物线与正方形一起平移,同时D停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.

manfen5.com 满分网 查看答案
如左图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=manfen5.com 满分网
(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
(4)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.
manfen5.com 满分网
查看答案
如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.
(1)求抛物线的解析式;
(2)抛物线的对称轴交x轴于点E,连接DE,并延长DE交圆O于F,求EF的长;
(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,点A(manfen5.com 满分网,0),B(3manfen5.com 满分网,2),C(0,2).动点D以每秒1个单位的速度从点O出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连接DA、DF.设运动时间为t秒.
(1)求∠ABC的度数;
(2)当t为何值时,AB∥DF;
(3)设四边形AEFD的面积为S.①求S关于t的函数关系式;
②若一抛物线y=-x2+mx经过动点E,当S<2manfen5.com 满分网时,求m的取值范围(写出答案即可).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.