满分5 > 初中数学试题 >

如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c...

如图,已知直线y=manfen5.com 满分网x+1与y轴交于点A,与x轴交于点D,抛物线y=manfen5.com 满分网x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).
(1)求该抛物线的解析式;
(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;
(3)在抛物线的对称轴上找一点M,使|AM-MC|的值最大,求出点M的坐标.

manfen5.com 满分网
(1)易得点A(0,1),那么把A,B坐标代入y=x2+bx+c即可求得函数解析式; (2)让直线解析式与抛物线的解析式结合即可求得点E的坐标.△PAE是直角三角形,应分点P为直角顶点,点A是直角顶点,点E是直角顶点三种情况探讨; (3)易得|AM-MC|的值最大,应找到C关于对称轴的对称点B,连接AB交对称轴的一点就是M.应让过AB的直线解析式和对称轴的解析式联立即可求得点M坐标. 【解析】 (1)将A(0,1)、B(1,0)坐标代入y=x2+bx+c 得, 解得, ∴抛物线的解折式为y=x2-x+1;(2分) (2)设点E的横坐标为m,则它的纵坐标为m2-m+1, 即E点的坐标(m,m2-m+1), 又∵点E在直线y=x+1上, ∴m2-m+1=m+1 解得m1=0(舍去),m2=4, ∴E的坐标为(4,3).(4分) (Ⅰ)当A为直角顶点时, 过A作AP1⊥DE交x轴于P1点,设P1(a,0)易知D点坐标为(-2,0), 由Rt△AOD∽Rt△P1OA得 即, ∴a=, ∴P1(,0).(5分) (Ⅱ)同理,当E为直角顶点时,过E作EP2⊥DE交x轴于P2点, 由Rt△AOD∽Rt△P2ED得, 即=, ∴EP2=, ∴DP2== ∴a=-2=, P2点坐标为(,0).(6分) (Ⅲ)当P为直角顶点时,过E作EF⊥x轴于F,设P3(b、0), 由∠OPA+∠FPE=90°,得∠OPA=∠FEP,Rt△AOP∽Rt△PFE, 由得, 解得b1=3,b2=1, ∴此时的点P3的坐标为(1,0)或(3,0),(8分) 综上所述,满足条件的点P的坐标为(,0)或(1,0)或(3,0)或(,0); (3)抛物线的对称轴为,(9分) ∵B、C关于x=对称, ∴MC=MB, 要使|AM-MC|最大,即是使|AM-MB|最大, 由三角形两边之差小于第三边得,当A、B、M在同一直线上时|AM-MB|的值最大.(10分) 易知直线AB的解折式为y=-x+1 ∴由, 得, ∴M(,-).(11分)
复制答案
考点分析:
相关试题推荐
已知抛物线y=ax2-x+c经过点Q(-2,manfen5.com 满分网),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、manfen5.com 满分网B两点,如图.
(1)求抛物线的解析式;
(2)求A、B两点的坐标;
(3)设PB于y轴交于C点,求△ABC的面积.
查看答案
如图,已知正比例函数和反比例函数的图象都经过点A(3,3).
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数在第一象限的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=manfen5.com 满分网S?若存在,求点E的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.
manfen5.com 满分网
查看答案
如图,已知抛物线y=a(x-1)2+3manfen5.com 满分网(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形?
(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.

manfen5.com 满分网 查看答案
矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线y=-manfen5.com 满分网x与BC边相交于D点.
(1)求点D的坐标;
(2)若抛物线y=ax2-manfen5.com 满分网x经过点A,试确定此抛物线的表达式;
(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求符合条件的点P的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.