满分5 > 初中数学试题 >

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,...

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据题意,过点B作BD⊥x轴,垂足为D;根据角的互余的关系,易得B到x、y轴的距离,即B的坐标; (2)根据抛物线过B点的坐标,可得a的值,进而可得其解析式; (3)首先假设存在,分A、C是直角顶点两种情况讨论,根据全等三角形的性质,可得答案. 【解析】 (1)过点B作BD⊥x轴,垂足为D, ∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°, ∴∠BCD=∠CAO,(1分) 又∵∠BDC=∠COA=90°,CB=AC, ∴△BCD≌△CAO,(2分) ∴BD=OC=1,CD=OA=2,(3分) ∴点B的坐标为(-3,1);(4分) (2)抛物线y=ax2+ax-2经过点B(-3,1), 则得到1=9a-3a-2,(5分) 解得a=, 所以抛物线的解析式为y=x2+x-2;(7分) (3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形: ①若以点C为直角顶点; 则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,(8分) 过点P1作P1M⊥x轴, ∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°, ∴△MP1C≌△DBC.(10分) ∴CM=CD=2,P1M=BD=1,可求得点P1(1,-1);(11分) ②若以点A为直角顶点; 则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,(12分) 过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,(13分) ∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),(14分) 经检验,点P1(1,-1)与点P2(2,1)都在抛物线y=x2+x-2上.(16分)
复制答案
考点分析:
相关试题推荐
如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.

manfen5.com 满分网 查看答案
如图1,抛物线y=x2-2x+k与x轴交于A、B两点,与y轴交于点C(0,-3).[图2、图3为解答备用图]
manfen5.com 满分网
(1)k=______,点A的坐标为______,点B的坐标为______
(2)设抛物线y=x2-2x+k的顶点为M,求四边形ABMC的面积;
(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;
(4)在抛物线y=x2-2x+k上求点Q,使△BCQ是以BC为直角边的直角三角形.
查看答案
如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CE-EO|,再以CM、CO为边作矩形CMNO.
(1)试比较EO、EC的大小,并说明理由;
(2)令m=manfen5.com 满分网,请问m是否为定值?若是,请求出m的值;若不是,请说明理由;
(3)在(2)的条件下,若CO=1,CE=manfen5.com 满分网,Q为AE上一点且QF=manfen5.com 满分网,抛物线y=mx2+bx+c经过C、Q两点,请求出此抛物线的解析式;
(4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:如图所示,关于x的抛物线y=ax2+x+c(a≠0)与x轴交于点A(-2,0)、点B(6,0),与y轴交于点C.
(1)求出此抛物线的解析式,并写出顶点坐标;
(2)在抛物线上有一点D,使四边形ABDC为等腰梯形,写出点D的坐标,并求出直线AD的解析式;
(3)在(2)中的直线AD交抛物线的对称轴于点M,抛物线上有一动点P,x轴上有一动点Q.是否存在以A、M、P、Q为顶点的平行四边形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C.其中点A在x轴的负半轴上,点C在y轴的负半轴上,线段OA、OC的长(OA<OC)是方程x2-5x+4=0的两个根,且抛物线的对称轴是直线x=1.
(1)求A、B、C三点的坐标;
(2)求此抛物线的解析式;
(3)若点D是线段AB上的一个动点(与点A、B不重合),过点D作DE∥BC交AC于点E,连接CD,设BD的长为m,△CDE的面积为S,求S与m的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.