满分5 > 初中数学试题 >

如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′...

如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC,BC,过A,B,C三点作抛物线.
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连接BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.
第三问改成,在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到什么位置时,△PCD的面积是△BCD面积的三分之一,求此时点P的坐标.

manfen5.com 满分网
(1)已知了A、B两点的坐标即可得出OA、OB的长,在直角三角形ACB中由于OC⊥AB,因此可用射影定理求出OC的长,即可得出C点的坐标.然后用待定系数法即可求出抛物线的解析式; (2)本题的关键是得出D点的坐标,CD平分∠BCE,如果连接O′D,那么根据圆周角定理即可得出∠DO′B=2∠BCD=∠BCE=90°由此可得出D的坐标为(4,-5).根据B、D两点的坐标即可用待定系数法求出直线BD的解析式; (3)本题要分两种情况进行讨论: ①过D作DP∥BC,交D点右侧的抛物线于P,此时∠PDB=∠CBD,可先用待定系数法求出直线BC的解析式,然后根据BC与DP平行,那么直线DP的斜率与直线BC的斜率相同,因此可根据D的坐标求出DP的解析式,然后联立直线DP的解析式和抛物线的解析式即可求出交点坐标,然后将不合题意的舍去即可得出符合条件的P点. ②同①的思路类似,先作与∠CBD相等的角:在O′B上取一点N,使BN=BM.可通过证△NBD≌△MDB,得出∠NDB=∠CBD,然后同①的方法一样,先求直线DN的解析式,进而可求出其与抛物线的交点即P点的坐标. 综上所述可求出符合条件的P点的值. 【解析】 (1)∵以AB为直径作⊙O′,交y轴的负半轴于点C, ∴∠OCA+∠OCB=90°, 又∵∠OCB+∠OBC=90°, ∴∠OCA=∠OBC, 又∵∠AOC=∠COB=90°, ∴△AOC∽△COB,(1分) ∴. 又∵A(-1,0),B(9,0), ∴, 解得OC=3(负值舍去). ∴C(0,-3), 故设抛物线解析式为y=a(x+1)(x-9), ∴-3=a(0+1)(0-9),解得a=, ∴二次函数的解析式为y=(x+1)(x-9), 即y=x2-x-3.(4分) (2)∵AB为O′的直径,且A(-1,0),B(9,0), ∴OO′=4,O′(4,0),(5分) ∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D, ∴∠BCD=∠BCE=×90°=45°, 连接O′D交BC于点M, 则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=AB=5. ∴O′D⊥x轴 ∴D(4,-5).(6分) ∴设直线BD的解析式为y=kx+b(k≠0) ∴(7分) 解得 ∴直线BD的解析式为y=x-9.(8分) (3)假设在抛物线上存在点P,使得∠PDB=∠CBD, 解法一:设射线DP交⊙O′于点Q,则=. 分两种情况(如图所示): ①∵O′(4,0),D(4,-5),B(9,0),C(0,-3). ∴把点C、D绕点O′逆时针旋转90°,使点D与点B重合,则点C与点Q1重合, 因此,点Q1(7,-4)符合=, ∵D(4,-5),Q1(7,-4), ∴用待定系数法可求出直线DQ1解析式为y=x-.(9分) 解方程组 得 ∴点P1坐标为(,),坐标为(,)不符合题意,舍去.(10分) ②∵Q1(7,-4), ∴点Q1关于x轴对称的点的坐标为Q2(7,4)也符合=. ∵D(4,-5),Q2(7,4). ∴用待定系数法可求出直线DQ2解析式为y=3x-17.(11分) 解方程组 得, 即 ∴点P2坐标为(14,25),坐标为(3,-8)不符合题意,舍去.(12分) ∴符合条件的点P有两个:P1(,),P2(14,25). 解法二:分两种情况(如图所示): ①当DP1∥CB时,能使∠PDB=∠CBD. ∵B(9,0),C(0,-3). ∴用待定系数法可求出直线BC解析式为y=x-3. 又∵DP1∥CB, ∴设直线DP1的解析式为y=x+n. 把D(4,-5)代入可求n=-, ∴直线DP1解析式为y=x-.(9分) 解方程组 得 ∴点P1坐标为(,)或(,)(不符合题意舍去).(10分) ②在线段O′B上取一点N,使BN=DM时,得△NBD≌△MDB(SAS), ∴∠NDB=∠CBD. 由①知,直线BC解析式为y=x-3. 取x=4,得y=-, ∴M(4,-), ∴O′N=O′M=, ∴N(,0), 又∵D(4,-5), ∴直线DN解析式为y=3x-17.(11分) 解方程组 得, ∴点P2坐标为(14,25),坐标为(3,-8)不符合题意,舍去.(12分) ∴符合条件的点P有两个:P1(,),P2(14,25). 解法三:分两种情况(如图所示): ①求点P1坐标同解法二.(10分) ②过C点作BD的平行线,交圆O′于G, 此时,∠GDB=∠GCB=∠CBD. 由(2)题知直线BD的解析式为y=x-9, 又∵C(0,-3) ∴可求得CG的解析式为y=x-3, 设G(m,m-3),作GH⊥x轴交于x轴与H, 连接O′G,在Rt△O′GH中,利用勾股定理可得,m=7, 由D(4,-5)与G(7,4)可得, DG的解析式为y=3x-17,(11分) 解方程组 得, 即 ∴点P2坐标为(14,25),坐标为(3,-8)不符合题意舍去.(12分) ∴符合条件的点P有两个:P1(,),P2(14,25). 说明:本题解法较多,如有不同的正确解法,请按此步骤给分. 【解析】 过B作BM⊥CD于M, B(9,0),C(0,-3),由勾股定理得:BC==3, ∵∠BCD=45°, ∴BM=CM, 由勾股定理得:BM=3, ∵△PCD的面积是△BCD面积的三分之一, ∴根据△CDB和△CDP有一条公共边CD,得出P到CD的高是3÷3=, 根据C(0,-3),D(4,-5)的坐标求出直线CD的解析式是y=x-3, 把直线CD向上平移单位得出直线y=x-3+,把直线CD向下平移单位得出直线y=x-3-, 则,, 解得:(因为此点不在直线BC下方舍去),,(因为此点不在直线BC下方舍去),,. 即P的坐标是(,)或(,).
复制答案
考点分析:
相关试题推荐
如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.

manfen5.com 满分网 查看答案
已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;
(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=manfen5.com 满分网x+b(b<k)与此图象有两个公共点时,b的取值范围.

manfen5.com 满分网 查看答案
如图,抛物线y=ax2-x-manfen5.com 满分网与x轴正半轴交于点A(3,0),以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF.
(1)求a的值;
(2)求点F的坐标.

manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,已知抛物线y=a(x+1)2+c(a>0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为y=kx-3,与x轴的交点为N,且cos∠BCO=manfen5.com 满分网
(1)求此抛物线的函数表达式;
(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?
查看答案
在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.