满分5 > 初中数学试题 >

如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半...

如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;
(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?
(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?
manfen5.com 满分网
(1)根据折叠的性质可知:AE=OA,OD=DE,那么可在直角三角形ABE中,用勾股定理求出BE的长,进而可求出CE的长,也就得出了E点的坐标. 在直角三角形CDE中,CE长已经求出,CD=OC-OD=4-OD,DE=OD,用勾股定理即可求出OD的长,也就求出了D点的坐标. (2)很显然四边形PMNE是个矩形,可用时间t表示出AP,PE的长,然后根据相似三角形APM和AED求出PM的长,进而可根据矩形的面积公式得出S,t的函数关系式,根据函数的性质即可得出S的最大值及对应的t的值. (3)本题要分两种情况进行讨论: ①ME=MA时,此时MP为三角形ADE的中位线,那么AP=,据此可求出t的值,过M作MF⊥OA于F,那么MF也是三角形AOD的中位线,M点的横坐标为A点横坐标的一半,纵坐标为D点纵坐标的一半.由此可求出M的坐标. ②当MA=AE时,先在直角三角形OAD中求出斜边AD的长,然后根据相似三角形AMP和ADE来求出AP,MP的长,也就能求出t的值.根据折叠的性质,此时AF=AP,MF=MP,也就求出了M的坐标. 【解析】 (1)依题意可知,折痕AD是四边形OAED的对称轴, ∴在Rt△ABE中,AE=AO=5,AB=4. BE==3. ∴CE=2. ∴E点坐标为(2,4). 在Rt△DCE中,DC2+CE2=DE2, 又∵DE=OD. ∴(4-OD)2+22=OD2. 解得:OD=. ∴D点坐标为(0,). (2)如图①∵PM∥ED, ∴△APM∽△AED. ∴, 又知AP=t,ED=,AE=5, PM=×=, 又∵PE=5-t. 而显然四边形PMNE为矩形. S矩形PMNE=PM•PE=×(5-t)=-t2+t; ∴S四边形PMNE=-(t-)2+, 又∵0<<5. ∴当t=时,S矩形PMNE有最大值. (3)(i)若以AE为等腰三角形的底,则ME=MA(如图①) 在Rt△AED中,ME=MA, ∵PM⊥AE, ∴P为AE的中点, ∴t=AP=AE=. 又∵PM∥ED, ∴M为AD的中点. 过点M作MF⊥OA,垂足为F,则MF是△OAD的中位线, ∴MF=OD=,OF=OA=, ∴当t=时,(0<<5),△AME为等腰三角形. 此时M点坐标为(,). (ii)若以AE为等腰三角形的腰,则AM=AE=5(如图②) 在Rt△AOD中,AD===. 过点M作MF⊥OA,垂足为F. ∵PM∥ED, ∴△APM∽△AED. ∴. ∴t=AP===2, ∴PM=t=. ∴MF=MP=,OF=OA-AF=OA-AP=5-2, ∴当t=2时,(0<2<5),此时M点坐标为(5-2,). 综合(i)(ii)可知,t=或t=2时,以A,M,E为顶点的三角形为等腰三角形, 相应M点的坐标为(,)或(5-2,).
复制答案
考点分析:
相关试题推荐
如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.
(1)求直线AC所对应的函数关系式;
(2)当点P是线段AC(端点除外)上的动点时,试探究:
①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,直线y=-manfen5.com 满分网x-manfen5.com 满分网与x轴交于点A,与y轴交于点C,抛物线y=ax2-manfen5.com 满分网x+c(a≠0)经过A,B,C三点.
(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;
(2)在抛物线上是否存在点P,使△ABP为直角三角形?若存在,直接写出P点坐标;若不存在,请说明理由;
(3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小?若存在,求出M点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求AD的长;
(2)设CP=x,问当x为何值时△PDQ的面积达到最大,并求出最大值;
(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.

manfen5.com 满分网 查看答案
如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.
(1)求证:△ADE∽△BEF;
(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.

manfen5.com 满分网 查看答案
如图,抛物线y1=-ax2-ax+1经过点P(-manfen5.com 满分网manfen5.com 满分网),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.