满分5 > 初中数学试题 >

如图,在△OAB中,∠B=90°,∠BOA=30°,OA=4,将△OAB绕点O按...

如图,在△OAB中,∠B=90°,∠BOA=30°,OA=4,将△OAB绕点O按逆时针方向旋转至△OA′B′,C点的坐标为(0,4).
(1)求A′点的坐标;
(2)求过C,A′,A三点的抛物线y=ax2+bx+c的解析式;
(3)在(2)中的抛物线上是否存在点P,使以O,A,P为顶点的三角形是等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)由题意可知,∠A′OA的度数和旋转角的度数相同,可过A′作x轴的垂线,在构建的直角三角形中可根据OA′的长和∠A′OA的度数求出A′的坐标; (2)已知了C,A′,A三点的坐标,可用待定系数法求出抛物线的解析式; (3)本题要分三种情况进行讨论: ①以O为直角顶点,OA=OP=4,而OC=4,那么此时C点和P点重合,因此P点的坐标即为C点的坐标. ②以A为直角顶点,那么P点的坐标必为(4,4)或(4,-4).可将这两个坐标代入抛物线的解析式中判定其是否在抛物线上即可. ③以P为直角顶点,那么P点在OA的垂直平分线上,且P点的坐标为(2,2)或(2,-2)然后按②的方法进行求解即可. 【解析】 (1)过点A′作A′D垂直于x轴,垂足为D,则四边形OB′A′D为矩形. 在△A′DO中,A′D=OA′•sin∠A′OD=4×sin60°=2, OD=A′B′=AB=2, ∴点A′的坐标为(2,2); (2)∵C(0,4)在抛物线上, ∴c=4, ∴y=ax2+bx+4, ∵A(4,0),A′(2,2),在抛物线y=ax2+bx+4上, ∴, 解之得, ∴所求解析式为y=+(2-3)x+4; (3)①若以点O为直角顶点,由于OC=OA=4,点C在抛物线上,则点P(0,4)为满足条件的点. ②若以点A为直角顶点,则使△PAO为等腰直角三角形的点P的坐标应为(4,4)或(4,-4),代入抛物线解析式中 知此两点不在抛物线上. ③若以点P为直角顶点,则使△PAO为等腰直角三角形的点P的坐标应为(2,2)或(2,-2),代入抛物线解析式中 知此两点不在抛物线上. 综上述在抛物线上只有一点P(0,4)使△OAP为等腰直角三角形.
复制答案
考点分析:
相关试题推荐
在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为x秒.
(1)用含x的代数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm2),求y与x的函数关系式,并写出自变量x的取值范围;
(3)当x为何值时,△EDQ为直角三角形?
manfen5.com 满分网
查看答案
如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒).
(1)当t=1时,得到P1、Q1两点,求经过A、P1、Q1三点的抛物线解析式及对称轴l;
(2)当t为何值时,直线PQ与⊙C相切并写出此时点P和点Q的坐标;
(3)在(2)的条件下,抛物线对称轴l上存在一点N,使NP+NQ最小,求出点N的坐标并说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.
(1)求m的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
查看答案
manfen5.com 满分网如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
查看答案
已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为manfen5.com 满分网,对称轴公式为x=-manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.