满分5 > 初中数学试题 >

如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在...

manfen5.com 满分网如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式;
(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.
(1)根据抛物线的解析式,利用对称轴公式,可直接求出其对称轴. (2)令x=0,可求出C点坐标,由BC∥x轴可知B,C关于抛物线的对称轴对称,可求出B点坐标,根据AC=BC可求出A点坐标. (3)分三种情况讨论: ①以AB为腰且顶角为∠A,先求出AB的值,再利用等腰三角形的性质结合勾股定理求出P1N的长,即可求出P1的坐标; ②以AB为腰且顶角为角B,根据MN的长和MP2的长,求出P2的纵坐标,已知其横坐标,可得其坐标; ③以AB为底,顶角为角P时,依据Rt△P3CK∽Rt△BAQ即可求出OK和P3K的长,可得P3坐标. 【解析】 (1)抛物线的对称轴x=-=;(2分) (2)由抛物线y=ax2-5ax+4可知C(0,4),对称轴x=-=, ∴BC=5,B(5,4),又AC=BC=5,OC=4, 在Rt△AOC中,由勾股定理,得AO=3, ∴A(-3,0)B(5,4)C(0,4)(5分) 把点A坐标代入y=ax2-5ax+4中, 解得a=-,(6) ∴y=x2+x+4.(7分) (3)存在符合条件的点P共有3个.以下分三类情形探索. 设抛物线对称轴与x轴交于N,与CB交于M. 过点B作BQ⊥x轴于Q, 易得BQ=4,AQ=8,AN=5.5,BM=. ①以AB为腰且顶角为角A的△PAB有1个:△P1AB. ∴AB2=AQ2+BQ2=82+42=80(8分) 在Rt△ANP1中,P1N====, ∴P1(,-).(9分) ②以AB为腰且顶角为角B的△PAB有1个:△P2AB. 在Rt△BMP2中MP2== = =,(10分) ∴P2=(,).(11分) ③以AB为底,顶角为角P的△PAB有1个,即△P3AB. 画AB的垂直平分线交抛物线对称轴于P3,此时平分线必过等腰△ABC的顶点C. 过点P3作P3K垂直y轴,垂足为K, ∵∠CP3K=∠ABQ,∠CKP3=∠AQB, ∴Rt△P3CK∽Rt△BAQ. ∴==. ∵P3K=2.5 ∴CK=5于是OK=1,(13分) ∴P3(2.5,-1).(14分)
复制答案
考点分析:
相关试题推荐
如图,抛物线y=manfen5.com 满分网x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的横坐标是-3,点B的横坐标是1.
(1)求m、n的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.(参考数:manfen5.com 满分网≈1.41,manfen5.com 满分网≈1.73,manfen5.com 满分网≈2.24)

manfen5.com 满分网 查看答案
如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为manfen5.com 满分网.设⊙M与y轴交于D,抛物线的顶点为E.
(1)求m的值及抛物线的解析式;
(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知平行四边形ABCD的顶点A的坐标是(0,16),AB平行于x轴,B,C,D三点在抛物线y=manfen5.com 满分网x2上,DC交y轴于N点,一条直线OE与AB交于E点,与DC交于F点,如果E点的横坐标为a,四边形ADFE的面积为manfen5.com 满分网
(1)求出B,D两点的坐标;
(2)求a的值;
(3)作△ADN的内切圆⊙P,切点分别为M,K,H,求tan∠PFM的值.

manfen5.com 满分网 查看答案
类比二次函数的图象的平移,我们对反比例函数的图象作类似的变换:
(1)将y=manfen5.com 满分网的图象向右平移1个单位,所得图象的函数表达式为______,再向上平移1个单位,所得图象的函数表达式为______
(2)函数y=manfen5.com 满分网的图象可由y=manfen5.com 满分网的图象向______平移______个单位得到;y=manfen5.com 满分网的图象可由哪个反比例函数的图象经过怎样的变换得到;
(3)一般地,函数y=manfen5.com 满分网(ab≠0,且a≠b)的图象可由哪个反比例函数的图象经过怎样的变换得到?
查看答案
manfen5.com 满分网已知图中的曲线是反比例函数y=manfen5.com 满分网(m为常数,m≠5)图象的一支.
(Ⅰ)这个反比例函数图象的另一支在第几象限?常数m的取值范围是什么;
(Ⅱ)若该函数的图象与正比例函数y=2x的图象在第一象内限的交点为A,过A点作x轴的垂线,垂足为B,当△OAB的面积为4时,求点A的坐标及反比例函数的解析式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.