满分5 > 初中数学试题 >

如图,已知正方形ABCD与正方形EFGH的边长分别是和,它们的中心O1,O2都在...

如图,已知正方形ABCD与正方形EFGH的边长分别是manfen5.com 满分网manfen5.com 满分网,它们的中心O1,O2都在直线l上,AD∥l,EG在直线l上,l与DC相交于点M,ME=7-2manfen5.com 满分网,当正方形EFGH沿直线l以每秒1个单位的速度向左平移时,正方形ABCD也绕O1以每秒45°顺时针方向开始旋转,在运动变化过程中,它们的形状和大小都不改变.
(1)在开始运动前,O1O2=______
(2)当两个正方形按照各自的运动方式同时运动3秒时,正方形ABCD停止旋转,这时AE=______,O1O2=______
(3)当正方形ABCD停止旋转后,正方形EFGH继续向左平移的时间为x秒,两正方形重叠部分的面积为y,求y与x之间的函数表达式.

manfen5.com 满分网
(1)开始运动前Q1O2=O1M+ME+O2E,O1M=AD=2,O2E=EH=2,因此O1O2=9. (2)当运动3秒后,A在直线l上,O1A=AD=4,O1E=7-3=4,因此O1E=O1A,A、E重合,即AE=0. O1O2=O1A+O2E=4+2=6. (3)本题要分四种情况: ①当0≤x<4时,图1,重合的小正方形对角线AE=x,因此y=x2. ②当4≤x<8时,图2,正方形EFGH在正方形ABCD内部,重合部分的面积就是正方形EFGH的面积. ③当8≤x<12时,图3,参照①的解法. ④当x≥12时,此时两正方形不重合,因此y=0. 【解析】 (1)9. (2)0,6 (3)当正方形ABCD停止运动后,正方形EFGH继续向左平移时,与正方形ABCD重叠部分的形状也是正方形. 重叠部分的面积y与x之间的函数关系应分四种情况: ①如图1,当0≤x<4时, ∵EA=x, ∴y与x之间的函数关系式为y=. ②如图2,当4≤x<8时,y与x之间的函数关系式为y=(2)2=8. ③如图3,当8≤x<12时, ∵CG=12-x, ∴y与x之间的函数关系式为y==x2-12x+72. ④当x≥12时,y与x之间的函数关系式为y=0.
复制答案
考点分析:
相关试题推荐
如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
(3)连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由.
manfen5.com 满分网
查看答案
manfen5.com 满分网如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式;
(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.
查看答案
如图,抛物线y=manfen5.com 满分网x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的横坐标是-3,点B的横坐标是1.
(1)求m、n的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.(参考数:manfen5.com 满分网≈1.41,manfen5.com 满分网≈1.73,manfen5.com 满分网≈2.24)

manfen5.com 满分网 查看答案
如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为manfen5.com 满分网.设⊙M与y轴交于D,抛物线的顶点为E.
(1)求m的值及抛物线的解析式;
(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知平行四边形ABCD的顶点A的坐标是(0,16),AB平行于x轴,B,C,D三点在抛物线y=manfen5.com 满分网x2上,DC交y轴于N点,一条直线OE与AB交于E点,与DC交于F点,如果E点的横坐标为a,四边形ADFE的面积为manfen5.com 满分网
(1)求出B,D两点的坐标;
(2)求a的值;
(3)作△ADN的内切圆⊙P,切点分别为M,K,H,求tan∠PFM的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.