满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0...

如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.
(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;
(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;
(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.
manfen5.com 满分网
(1)由已知可得OP=x,OE=y,则PA=4-x,AB=3.利用互余关系可证Rt△POE∽Rt△BPA,由相似比可得y关于x的函数关系式; (2)此时,△PAB、△POE均为等腰直角三角形,BD=BA=3,CD=4-3=1,故P(1,0),E(0,1),B(4,3),代入抛物线解析式的一般式即可; (3)以PE为直角边,则点P可以作为直角顶点,此时∠EPB=90°,B点符合;点E也可以作为直角顶点,采用将直线PB向上平移过E点的方法,确定此时的直线EQ解析式,再与抛物线解析式联立,可求点Q坐标. 【解析】 (1)由已知PB平分∠APD,PE平分∠OPF,且PD、PF重合,则∠BPE=90度. ∴∠OPE+∠APB=90°. 又∵∠APB+∠ABP=90°, ∴∠OPE=∠PBA. ∴Rt△POE∽Rt△BPA. ∴. 即. ∴y=x(4-x)=-x2+x(0<x<4). 且当x=2时,y有最大值. (2)由已知,△PAB、△POE均为等腰直角三角形,可得P(1,0),E(0,1),B(4,3). 设过此三点的抛物线为y=ax2+bx+c,则 ∴ y=x2-x+1. (3)由(2)知∠EPB=90°,即点Q与点B重合时满足条件. 直线PB为y=x-1,与y轴交于点(0,-1). 将PB向上平移2个单位则过点E(0,1), ∴该直线为y=x+1. 由 得 ∴Q(5,6). 故该抛物线上存在两点Q(4,3)、(5,6)满足条件.
复制答案
考点分析:
相关试题推荐
已知抛物线y=x2-2x+m与x轴交于点A(x1,0)、B(x2,0)(x2>x1),
(1)若点P(-1,2)在抛物线y=x2-2x+m上,求m的值;
(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax2+bx+m上,则q1、q2的大小关系是______
(请将结论写在横线上,不要写解答过程);(友情提示:结论要填在答题卡相应的位置上)
(3)设抛物线y=x2-2x+m的顶点为M,若△AMB是直角三角形,求m的值.
查看答案
如图,已知正方形ABCD与正方形EFGH的边长分别是manfen5.com 满分网manfen5.com 满分网,它们的中心O1,O2都在直线l上,AD∥l,EG在直线l上,l与DC相交于点M,ME=7-2manfen5.com 满分网,当正方形EFGH沿直线l以每秒1个单位的速度向左平移时,正方形ABCD也绕O1以每秒45°顺时针方向开始旋转,在运动变化过程中,它们的形状和大小都不改变.
(1)在开始运动前,O1O2=______
(2)当两个正方形按照各自的运动方式同时运动3秒时,正方形ABCD停止旋转,这时AE=______,O1O2=______
(3)当正方形ABCD停止旋转后,正方形EFGH继续向左平移的时间为x秒,两正方形重叠部分的面积为y,求y与x之间的函数表达式.

manfen5.com 满分网 查看答案
如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
(3)连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由.
manfen5.com 满分网
查看答案
manfen5.com 满分网如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式;
(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.
查看答案
如图,抛物线y=manfen5.com 满分网x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的横坐标是-3,点B的横坐标是1.
(1)求m、n的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.(参考数:manfen5.com 满分网≈1.41,manfen5.com 满分网≈1.73,manfen5.com 满分网≈2.24)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.