满分5 > 初中数学试题 >

如图,已知二次函数y=ax2-4x+c的图象经过点A和点B. (1)求该二次函数...

如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.

manfen5.com 满分网
(1)根据图象可得出A、B两点的坐标,然后将其代入抛物线的解析式中即可求得二次函数的解析式. (2)根据(1)得出的抛物线的解析式,用配方法或公式法即可求出对称轴和顶点坐标. (3)将P点坐标代入抛物线的解析式中,即可求出m的值,P,Q关于抛物线的对称轴对称,那么两点的纵坐标相等,因此P点到x轴的距离同Q到x轴的距离相等,均为m的绝对值. 【解析】 (1)将x=-1,y=-1;x=3,y=-9, 分别代入y=ax2-4x+c 得, 解得, ∴二次函数的表达式为y=x2-4x-6. (2)对称轴为x=2; 顶点坐标为(2,-10). (3)将(m,m)代入y=x2-4x-6,得m=m2-4m-6, 解得m1=-1,m2=6. ∵m>0, ∴m1=-1不合题意,舍去. ∴m=6, ∵点P与点Q关于对称轴x=2对称, ∴点Q到x轴的距离为6.
复制答案
考点分析:
相关试题推荐
如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点______(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
如图,对称轴为直线x=manfen5.com 满分网的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且∠AOC=60°,点B的坐标是(0,8manfen5.com 满分网),点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,同时,点Q从点O开始以每秒a(1≤a≤3)个单位长度的速度沿射线OA方向移动设t(0<t≤8)秒后,直线PQ交OB于点D.
(1)求∠AOB的度数及线段OA的长;
(2)求经过A,B,C三点的抛物线的解析式;
(3)当a=3,OD=manfen5.com 满分网时,求t的值及此时直线PQ的解析式;
(4)当a为何值时,以O,Q,D为顶点的三角形与△OAB相似?当a为何值时,以O,Q,D为顶点的三角形与△OAB不相似?请给出你的结论,并加以证明.

manfen5.com 满分网 查看答案
设抛物线y=ax2+bx-2与x轴交于两个不同的点A(-1,0)、B(m,0),与y轴交于点C,且∠ACB=90度.
(1)求m的值和抛物线的解析式;
(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标;
(3)在(2)的条件下,△BDP的外接圆半径等于______

manfen5.com 满分网 查看答案
如图1,在平面直角坐标系中,已知点A(0,4manfen5.com 满分网),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒manfen5.com 满分网个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求manfen5.com 满分网出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.